Inici     Començant     Sobreviure a l'Univers    
Inhabited Sky
    News@Sky     Astro Fotografia     La Col·lecció     Fòrum     Blog New!     FAQ     Premsa     Login  

IC 1474


Contingut

Imatges

Carregar la teva Imatge

DSS Images   Other Images


Articles Relacionats

Nearby Optical Galaxies: Selection of the Sample and Identification of Groups
In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.

Distances to Galaxies from the Correlation between Luminosities and Line Widths. III. Cluster Template and Global Measurement of H0
The correlation between the luminosities and rotation velocities ofgalaxies can be used to estimate distances to late-type galaxies. It isan appropriate moment to reevaluate this method given the great deal ofnew information available. The major improvements described hereinclude: (1) the template relations can now be defined by large,complete samples, (2) the samples are drawn from a wide range ofenvironments, (3) the relations are defined by photometric informationat the B, R, I, and K' bands, (4) the multiband information clarifiesproblems associated with internal reddening, (5) the template zeropoints are defined by 24 galaxies with accurately known distances, and(6) the relations are applied to 12 clusters scattered across the skyand out to velocities of 8000 km s-1. The biggest change fromearlier calibrations are associated with point 5. Roughly a 15% increasein the distance scale has come about with the fivefold increase in thenumber of zero-point calibrators. The overall increase in the distancescale from the luminosity-line width methodology is about 10% afterconsideration of all factors. Modulo an assumed distance to the LargeMagellanic Cloud of 50 kpc and no metallicity corrections to the Cepheidcalibration, the resulting value of the Hubble constant isH0=77+/-8 km s-1 Mpc-1, where the erroris the 95% probable statistical error. Cumulative systematic errorsinternal to this analysis should not exceed 10%. Uncertainties in thedistance scale ladder external to this analysis are estimated at ~10%.If the Cepheid calibration is shifted from the LMC to NGC 4258 with adistance established by observations of circumnuclear masers, thenH0 is larger by 12%.

Arcsecond Positions of UGC Galaxies
We present accurate B1950 and J2000 positions for all confirmed galaxiesin the Uppsala General Catalog (UGC). The positions were measuredvisually from Digitized Sky Survey images with rms uncertaintiesσ<=[(1.2")2+(θ/100)2]1/2,where θ is the major-axis diameter. We compared each galaxymeasured with the original UGC description to ensure high reliability.The full position list is available in the electronic version only.

The I-Band Tully-Fisher Relation for SC Galaxies: 21 Centimeter H I Line Data
A compilation of 21 cm line spectral parameters specifically designedfor application of the Tully-Fisher (TF) distance method is presentedfor 1201 spiral galaxies, primarily field Sc galaxies, for which opticalI-band photometric imaging is also available. New H I line spectra havebeen obtained for 881 galaxies. For an additional 320 galaxies, spectraavailable in a digital archive have been reexamined to allow applicationof a single algorithm for the derivation of the TF velocity widthparameter. A velocity width algorithm is used that provides a robustmeasurement of rotational velocity and permits an estimate of the erroron that width taking into account the effects of instrumental broadeningand signal-to-noise. The digital data are used to establish regressionrelations between measurements of velocity widths using other commonprescriptions so that comparable widths can be derived throughconversion of values published in the literature. The uniform H I linewidths presented here provide the rotational velocity measurement to beused in deriving peculiar velocities via the TF method.

The I-Band Tully-Fisher Relation for SC Galaxies: Optical Imaging Data
Properties derived from the analysis of photometric I-band imagingobservations are presented for 1727 inclined spiral galaxies, mostly oftypes Sbc and Sc. The reduction, parameter extraction, and errorestimation procedures are discussed in detail. The asymptotic behaviorof the magnitude curve of growth and the radial variation in ellipticityand position angle are used in combination with the linearity of thesurface brightness falloff to fit the disk portion of the profile. TotalI-band magnitudes are calculated by extrapolating the detected surfacebrightness profile to a radius of eight disk scale lengths. Errors inthe magnitudes, typically ~0.04 mag, are dominated by uncertainties inthe sky subtraction and disk-fitting procedures. Comparison is made withthe similar imaging database of Mathewson, Ford, & Buchhorn, both aspresented originally by those authors and after reanalyzing theirdigital reduction files using identical disk-fitting procedures. Directcomparison is made of profile details for 292 galaxies observed incommon. Although some differences occur, good agreement is found,proving that the two data sets can be used in combination with onlyminor accommodation of those differences. The compilation of opticalproperties presented here is optimized for use in applications of theTully-Fisher relation as a secondary distance indicator in studies ofthe local peculiar velocity field.

The intra-cluster medium influence on spiral galaxies
We made a detailed analysis of the sample of 39 cluster spiral galaxiesof various types observed at Hα wavelength by Amram et al. (1992to 1996), with a scanning Fabry-Perot. We plotted the outer gradient oftheir rotation curves as a function of the deprojected cluster-centricdistance. The rotation curves of late type galaxies markedly rise farfrom the cluster center. This suggests evolutionary effects, since earlytypes show no special trend. We suggest that the evolution processwithin a cluster leads late type galaxies to exhibit flatter curves whenthey get closer to the center, on their way to evolving into early typegalaxies.

Total magnitude, radius, colour indices, colour gradients and photometric type of galaxies
We present a catalogue of aperture photometry of galaxies, in UBVRI,assembled from three different origins: (i) an update of the catalogueof Buta et al. (1995) (ii) published photometric profiles and (iii)aperture photometry performed on CCD images. We explored different setsof growth curves to fit these data: (i) The Sersic law, (ii) The net ofgrowth curves used for the preparation of the RC3 and (iii) A linearinterpolation between the de Vaucouleurs (r(1/4) ) and exponential laws.Finally we adopted the latter solution. Fitting these growth curves, wederive (1) the total magnitude, (2) the effective radius, (3) the colourindices and (4) gradients and (5) the photometric type of 5169 galaxies.The photometric type is defined to statistically match the revisedmorphologic type and parametrizes the shape of the growth curve. It iscoded from -9, for very concentrated galaxies, to +10, for diffusegalaxies. Based in part on observations collected at the Haute-ProvenceObservatory.

A catalogue of spatially resolved kinematics of galaxies: Bibliography
We present a catalogue of galaxies for which spatially resolved data ontheir internal kinematics have been published; there is no a priorirestriction regarding their morphological type. The catalogue lists thereferences to the articles where the data are published, as well as acoded description of these data: observed emission or absorption lines,velocity or velocity dispersion, radial profile or 2D field, positionangle. Tables 1, 2, and 3 are proposed in electronic form only, and areavailable from the CDS, via anonymous ftp to cdsarc.u-strasbg.fr (to130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

Homogeneous Velocity-Distance Data for Peculiar Velocity Analysis. III. The Mark III Catalog of Galaxy Peculiar Velocities
This is the third in a series of papers in which we assemble and analyzea homogeneous catalog of peculiar velocity data. In Papers I and II, wedescribed the Tully-Fisher (TF) redshift-distance samples thatconstitute the bulk of the catalog and our methodology for obtainingmutually consistent TF calibrations for these samples. In this paper, wesupply further technical details of the treatment of the data andpresent a subset of the catalog in tabular form. The full catalog, knownas the Mark III Catalog of Galaxy Peculiar Velocities, is available inaccessible on-line databases, as described herein. The electroniccatalog incorporates not only the TF samples discussed in Papers I andII but also elliptical galaxy Dn- sigma samples originally presentedelsewhere. The relative zero pointing of the elliptical and spiral datasets is discussed here. The basic elements of the Mark III Catalog arethe observables for each object (redshift, magnitude, velocity width,etc.) and inferred distances derived from the TF or Dn- sigma relations.Distances obtained from both the forward and inverse TF relations aretabulated for the spirals. Malmquist bias--corrected distances arecomputed for each catalog object using density fields obtained from theIRAS 1.2 Jy redshift survey. Distances for both individual objects andgroups are provided. A variety of auxiliary data, including distancesand local densities predicted from the IRAS redshift surveyreconstruction method, are tabulated as well. We study the distributionsof TF residuals for three of our samples and conclude that they are wellapproximated as Gaussian. However, for the Mathewson et al. sample wedemonstrate a significant decrease in TF scatter with increasingvelocity width. We test for, but find no evidence of, a correlationbetween TF residuals and galaxy morphology. Finally, we derivetransformations that map the apparent magnitude and velocity width datafor each spiral sample onto a common system. This permits theapplication of analysis methods that assume that a unique TF relationdescribes the entire sample.

Optical Rotation Curves and Linewidths for Tully-Fisher Applications
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1997AJ....114.2402C&db_key=AST

The I band Tully-Fisher relation for cluster galaxies: data presentation.
Observational parameters which can be used for redshift-independentdistance determination using the Tully-Fisher (TF) technique are givenfor \ntot spiral galaxies in the fields of 24 clusters or groups. I bandphotometry for the full sample was either obtained by us or compiledfrom published literature. Rotational velocities are derived either from21 cm spectra or optical emission line long-slit spectra, and convertedto a homogeneous scale. In addition to presenting the data, a discussionof the various sources of error on TF parameters is introduced, and thecriteria for the assignment of membership to each cluster are given.

The universal rotation curve of spiral galaxies - I. The dark matter connection
We use a homogeneous sample of about 1100 optical and radio rotationcurves (RCs) and relative surface photometry to investigate the mainmass structure properties of spirals, over a range of 6 mag and out to<~1.5 and 2 optical radii (for the optical and radio data,respectively). We confirm the strong dependence on luminosity for boththe profile and the amplitude of RCs claimed by Persic & Salucci.Spiral RCs show the striking feature that a single global parameter,e.g. luminosity, dictates the rotational velocity at any radius for anyobject, so revealing the existence of a universal RC. At highluminosities, there is a slight discrepancy between the profiles of RCsand those predicted from the luminous matter (LM) distributions: thisimplies a small, yet detectable, amount of dark matter (DM). At lowluminosities, the failure of the LM prediction is much more severe, andthe DM is the only relevant mass component. We show that the universalRC implies a number of scaling properties between dark and luminousgalactic structure parameters: (i) the DM/LM mass ratio scales inverselywith luminosity; (ii) the central halo density scales as L^-0.7 (iii)the halo core radius is comparable to the optical radius, but shrinksfor low luminosities; (iv) the total halo mass scales as L^0.5. Suchscaling properties can be represented as a curve in the(luminosity)-(DM/LM mass ratio)-(DM core radius)-(DM central density)space, which provides a geometrical description of the tight couplingbetween the dark and the luminous matter in spiral galaxies.

Parameters of 2447 Southern Spiral Galaxies for Use in the Tully-Fisher Relation
I-band luminosities, rotational velocities, and redshifts of 1092 spiralgalaxies have been measured by CCD photometry and Hα spectroscopyusing the 1 m and 2.3 m telescopes at Siding Spring Observatory,respectively. The results are tabulated. Luminosity profiles andHα rotation curves are given for the galaxies. When these resultsare combined with similar data for 1355 spiral galaxies publishedpreviously (Mathewson, Ford, & Buchhorn, hereafter Paper I), itprovides a large, uniform, and unique data set with which to measure,via the Tully-Fisher relation, the peculiar velocities of galaxies inthe local universe to a distance of 11,000 km s^-1^ (Mathewson &Ford). Taking advantage of the opportunity for publishing this data inmachine-readable form, in the CD-ROM, we have also included similar datafor the 1355 galaxies in Paper I.

Deep r-Band Photometry for Northern Spiral Galaxies
We present r-band surface photometry for 349 northern Sb-Sc UGCgalaxies, from a total of 627 CCD images. For each galaxy, we presentsurface brightness profiles, isophotal and total magnitudes, isophotalradii, and structural parameters from exponential fits to the disk. Onehundred ninety-five galaxies have been observed more than once. Allnights with a photometric transformation scatter greater than 0.022 magwere rejected. Sky errors are investigated carefully and yield profilesthat are reliable down to 26 r mag arcsec^-2^, Deep isophotal magnitudesare as accurate as +/-0.019, and extrapolated magnitudes are internallyconsistent to within 0.020. We compare visual (UGC) and CCD isophotaldiameters and show that axial ratio must be included as a thirdparameter. Comparison with the r-band CCD photometry of Kent andWillick, and accounting for sky errors, suggest typical errors for totalmagnitudes of +/-0.08. Our data are also shown to be zero-pointed on thesame Gunn r system as that of Kent and Willick. Ellipticity measurementsagree very well except for progressively face-on galaxies where spiralstructure is more conspicuous. The ellipticity internal error is lessthan 0.02, or about 3^deg^ for inclinations. Our internal extinctioncorrection implies that disks are semitransparent in their outer parts.We caution that comparison of central surface brightnesses and scalelengths is complicated by the subjective nature of their measurement;extreme care must be applied when using such quantities. We measure anapparent Freeman law of (μ_0,c_) = 20.08 +/- 0.55 r mag arcsec^-2^.This magnitude-limited sample was originally derived for studies oflarge-scale motions in the local universe. The deep CCD photometry isalso ideally suited for matching spectroscopic studies, mass modeling,galaxy structural analysis, etc.

Photoelectric UBV Photometry of Galaxies in the Clusters Pegasus I, Pegasus II, Abell 262, Abell 1367, and Abell 2197-9
This paper presents photoelectric UBV multiaperture photometry of 144galaxies, 139 of which are associated with six nearby bright clusters.The observations were made at the McDonald Observatory from 1986September to 1987 November and were part of the production of the ThirdReference Catalogue of Bright Galaxies (RC3). The observations were usedto compute total magnitudes and color indices published in RC3. Theobservations can also be used to calibrate CCD images.

An image database. II. Catalogue between δ=-30deg and δ=70deg.
A preliminary list of 68.040 galaxies was built from extraction of35.841 digitized images of the Palomar Sky Survey (Paper I). For eachgalaxy, the basic parameters are obtained: coordinates, diameter, axisratio, total magnitude, position angle. On this preliminary list, weapply severe selection rules to get a catalog of 28.000 galaxies, wellidentified and well documented. For each parameter, a comparison is madewith standard measurements. The accuracy of the raw photometricparameters is quite good despite of the simplicity of the method.Without any local correction, the standard error on the total magnitudeis about 0.5 magnitude up to a total magnitude of B_T_=17. Significantsecondary effects are detected concerning the magnitudes: distance toplate center effect and air-mass effect.

Rotation Curves of 967 Spiral Galaxies
We present the rotation curves of 967 southern spiral galaxies, obtainedby deprojecting and folding the raw Hα data originally publishedby Mathewson, Ford, & Buchhorn (1992). For 900 objects, we alsopresent, in figures and tables, the rotation curves smoothed on scalescorresponding to 5%-20% of the optical size; of these, 80 meet objectiveexcellence criteria and are suitable for individual detailed massmodeling, while 820, individually less compelling mainly because of themoderate statistics and/or limited extension, are suitable forstatistical studies. The remaining 67 curves suffer from severeasymmetries, small statistics, and large internal scatter that maylargely limit their use in galaxy structure studies. The deprojectedfolded curves, the smoothed curves, and various related quantities areavailable via anonymous ftp at galileo.sissa.it in the directory/users/ftp/pub/psrot.

Recalibration of the H-0.5 magnitudes of spiral galaxies
The H-magnitude aperture data published by the Aaronson et al.collaboration over a 10 year period is collected into a homogeneous dataset of 1731 observations of 665 galaxies. Ninety-six percent of thesegalaxies have isophotal diameters and axial ratios determined by theThird Reference Cataloque of Bright Galaxies (RC3; de Vaucouleurs et al.1991), the most self-consistent set of optical data currently available.The precepts governing the optical data in the RC3 are systematicallydifferent from those of the Second Reference Catalogue (de Vaucouleurs,de Vaucouleurs, & Corwin 1976), which were used by Aaronson et al.for their original analyses of galaxy peculiar motions. This in turnleads to systematic differences in growth curves and fiducialH-magnitudes, prompting the present recalibration of the near-infraredTully-Fisher relationship. New optically normalized H-magnitude growthcurves are defined for galaxies of types SO to Im, from which new valuesof fiducial H-magnitudes, Hg-0.5, are measured forthe 665 galaxies. A series of internal tests show that these fourstandard growth curves are defined to an accuracy of 0.05 mag over theinterval -1.5 less than or equal to log (A/Dg) less than orequal to -0.2. Comparisons with the Aaronson et al. values of diameters,axial ratios, and fiducial H-magnitudes show the expected differences,given the different definitions of these parameters. The values ofHg-0.5 are assigned quality indices: a qualityvalue of 1 indicates an accuracy of less than 0.2 mag, quality 2indicates an accuracy of 0.2-0.35 mag, and quality 3 indicates anaccuracy of more than 0.35 mag. Revised values of corrected H I velocitywidths are also given, based on the new set of axial ratios defiend bythe RC3.

General study of group membership. II - Determination of nearby groups
We present a whole sky catalog of nearby groups of galaxies taken fromthe Lyon-Meudon Extragalactic Database. From the 78,000 objects in thedatabase, we extracted a sample of 6392 galaxies, complete up to thelimiting apparent magnitude B0 = 14.0. Moreover, in order to considersolely the galaxies of the local universe, all the selected galaxieshave a known recession velocity smaller than 5500 km/s. Two methods wereused in group construction: a Huchra-Geller (1982) derived percolationmethod and a Tully (1980) derived hierarchical method. Each method gaveus one catalog. These were then compared and synthesized to obtain asingle catalog containing the most reliable groups. There are 485 groupsof a least three members in the final catalog.

Dark matter in spiral galaxies and the Arimoto-Jablonka photometric model
We use the recent stellar population synthesis models by Arimoto &Jablonka (1991), which by introducing the bulge into the calculation ofgalaxy masses mark a significant improvement over previous one-componentmodels, to show that low-luminosity spiral galaxies have a higher darkmatter fraction within the optical radius than high-luminosity spirals.In fact, the derived dark-to-visible mass ratio increases withdecreasing luminosity, approximately as 1/(square root ofLB). This conclusion agrees with previous results based ondynamical disk halo decompositions of galaxy rotation curves (e.g.Persic & Salucci 1988). On the other hand, we do not find any strongtrend between dark matter content and galaxy B - V colors, although wecannot exclude a weak one. Our results agree with Jablonka &Arimoto's (1992) conclusion that colors are not a primary indicator ofthe dark matter content of spiral galaxies. Instead, we confirm that theluminosity is a fundamental indicator of the dark mass fraction ofspiral galaxies.

A southern sky survey of the peculiar velocities of 1355 spiral galaxies
The paper presents data from photometric and spectroscopic observationsof 1355 southern spiral galaxies and uses them to determine theirdistances and peculiar velocities via the Tully-Fisher (TF) relation.I-band CCD surface photometry was carried out using the 1-m and 3.9-mtelescopes at Siding Spring Observatory. H-alpha rotation curves for 965galaxies and 551 H I profiles are presented. The physical parameters,photometric and velocity data, distances, and peculiar velocities of thegalaxies are presented in tabular form. The mean distance, systemicvelocity, and average peculiar velocity of 24 clusters in the sample aregiven. TF diagrams are presented for each cluster.

I-band CCD surface photometry of spiral galaxies in 16 nearby clusters
Results of I-band CCD surface photometry for 284 spiral galaxies in 16clusters in the redshift range from 3000 to 11,000 km/s are presented.Various effects on surface photometry are discussed, and the relevantcorrections are outlined.

KISO survey for ultraviolet-excess galaxies. XIV.
The 14th list and identification charts of the UV-excess galaxiesdetected on the multicolor plates taken with the Kiso Schmidt telescopefor 10 survey fields are presented. In the sky area of some 300 sq deg,about 470 objects are cataloged down to the photographic magnitude ofabout 17.5.

The dark matter content of spiral galaxies
A novel technique for calculating the fraction of dark material withinthe optical radius of spiral galaxies is presented. Disk luminositiesare converted to disk masses, and the latter are compared to dynamicalmasses. The method employs the well-established observational resultthat spiral galaxies have similar central surface brightnesses, as wellas published stellar-synthesis evolutionary models, color-magnituderelations, and optical rotation curves. No assumptions about the darkmatter distribution are necessary. It is found that the ratio ofdisk-to-dynamical mass within the optical radius increases roughly asLB exp 0.4. This is in good agreement with the results ofPersic and Salucci (1991) which are derived from independentconsiderations.

Correlation functions of matter from galaxy rotation curves
Based on the disk-halo decomposition method introduced by Persic andSalucci (1988, 1990), 58 spiral rotation curves are used to measure thegalaxy-background correlation function in the range 3-350 kpc for H(0) =50 km/s per Mpc. It is found that (1) the two-point function is zeta(r)equal to about (r0/r) exp 1.76, with r(0) equal to about 7 Mpc (forOmega 0 = 1), and (2) higher order correlation functions are detected upto the sixth order and are found to fit the hierarchical expression.

The universal galaxy rotation curve
The correlation between the shape of the rotation curves and theluminosity is considered, and it is found that for a given luminositythe rotation curves within the optical radius are a universal function.This result implies strong systematic variations of the amplitude andthe profile of the circular velocity with luminosity. Faint galaxieshave low velocities and steep velocity gradients and bright galaxieshave high velocities and shallow velocity gradients. Because luminousdisks are self-similar, the observed progression of the shape ofrotation curves with luminosity suggests that the dark-to-visibleinterplay varies with luminosity.

Kinematical observations of ordinary spiral galaxies - A bibliographical compilation
Data extracted from 280 papers reporting observations of the kinematicsof 245 nonbarred spiral galaxies are presented. Information is providedon the type of observations (instruments, spectral lines used, etc.) andthe derived geometrical and kinematical parameters of the galaxies(major axis position angle, inclination, heliocentric systemic velocity,maximum extension of the kinematical measurements, etc.). In addition,whenever possible, a 'mean' rotation curve has been considered, fromwhich the maximum rotational velocity of the galaxy and a parameterdescribing the essential shape of the rotation curve within r25 havebeen derived. Histograms illustrating the distribution of morphologicaltypes, inclinations, extensions of the kinematical measurements, andmaximum rotational velocities account for the statistical properties ofthis sample of spiral galaxies.

Mass Decomposition of Spiral Galaxies from Disc Kinematics
We devise a method for the disc/halo mass decomposition of the rotationcurves of spiral galaxies that was outlined by us in a previous paper.Upon application to a larger sample of 58 spirals, we confirm ourearlier results. In particular, we find that the disc-to-halo mass ratioat the optical radius, M_disc_/M_halo_, is a strong function ofluminosity, M_disc_/M_halo_ is proportional to L^2/3^_B_.

The Tully-Fisher relation in different environments
The Tully-Fisher relation (TFR) in different environments wasinvestigated in 13 galaxy samples spanning a large range in galaxydensities, using two statistical tests to compare the TFR of differentsamples. Results of the analysis of TFR parameters in severalenvironments showed that, when samples of similar data-accuracy andmagnitude-range were compared, there was no significant differencebetween the galaxy samples. It is suggested that a comparison of sampleswith very different data accuracy or those biased by incompletenesseffects may lead to misleading results.

Rotating disk galaxies - Yet another case for dark matter
A method to probe the systematic variations of the dark matter massfraction (DM) in the optical region of disk galaxies is proposed, basedon studying the correlation between galaxy luminosity and the normalizedradius where the rotation frequency exceeds a given multiple of therotation frequency as measured at the optical disk radius. The resultsstrongly suggest the ubiquitous existence of DM throughout theluminosity sequence of galaxies, thereby challenging the possibilitythat luminous matter alone can be responsible for the observed diskdynamics. By modeling the distribution of dark matter by means of apseudoisothermal halo, it is shown that the disk-to-halo mass ratio atthe optical edge varies with luminosity.

Enviar un nou article


Enllaços Relacionats

  • - No s'ha trobat enllaços -
Enviar un nou enllaç


Membre dels grups següents:


Dades d'Observació i Astrometria

Constel·lació:Pisces
Ascensió Recta:23h12m51.30s
Declinació:+05°48'22.0"
Dimensions aparents:1.072′ × 0.49′

Catàlegs i designacions:
Noms Propis   (Edit)
ICIC 1474
HYPERLEDA-IPGC 70702

→ Sol·licitar més catàlegs i designacions de VizieR