Inici     Començant     Sobreviure a l'Univers    
Inhabited Sky
    News@Sky     Astro Fotografia     La Col·lecció     Fòrum     Blog New!     FAQ     Premsa     Login  

NGC 4648


Contingut

Imatges

Carregar la teva Imatge

DSS Images   Other Images


Articles Relacionats

HI content in galaxies in loose groups
Gas deficiency in cluster spirals is well known and ram-pressurestripping is considered the main gas removal mechanism. In some compactgroups too gas deficiency is reported. However, gas deficiency in loosegroups is not yet well established. Lower dispersion of the membervelocities and the lower density of the intragroup medium in small loosegroups favour tidal stripping as the main gas removal process in them.Recent releases of data from the HI Parkes All-Sky Survey (HIPASS) andcatalogues of nearby loose groups with associated diffuse X-ray emissionhave allowed us to test this notion. In this paper, we address thefollowing questions: (i) do galaxies in groups with diffuse X-rayemission statistically have lower gas content compared to the ones ingroups without diffuse X-ray emission? (ii) does HI deficiency vary withthe X-ray luminosity, LX, of the loose group in a systematicway? We find that (i) galaxies in groups with diffuse X-ray emission, onaverage, are HI deficient, and have lost more gas compared to those ingroups without X-ray emission; the latter are found not to havesignificant HI deficiency; (ii) no systematic dependence of the HIdeficiency with LX is found. Ram-pressure-assisted tidalstripping and evaporation by thermal conduction are the two possiblemechanisms to account for this excess gas loss.

The X-ray emission properties and the dichotomy in the central stellar cusp shapes of early-type galaxies
The Hubble Space Telescope has revealed a dichotomy in the centralsurface brightness profiles of early-type galaxies, which havesubsequently been grouped into two families: core, boxy, anisotropicsystems; and cuspy (`power-law'), discy, rotating ones. Here weinvestigate whether a dichotomy is also present in the X-ray propertiesof the two families. We consider both their total soft emission(LSX,tot), which is a measure of the galactic hot gascontent, and their nuclear hard emission (LHX,nuc), mostlycoming from Chandra observations, which is a measure of the nuclearactivity. At any optical luminosity, the highest LSX,totvalues are reached by core galaxies; this is explained by their beingthe central dominant galaxies of groups, subclusters or clusters, inmany of the logLSX,tot (ergs-1) >~ 41.5 cases.The highest LHX,nuc values, similar to those of classicalactive galactic nuclei (AGNs), in this sample are hosted only by core orintermediate galaxies; at low luminosity AGN levels, LHX,nucis independent of the central stellar profile shape. The presence ofoptical nuclei (also found by HST) is unrelated to the level ofLHX,nuc, even though the highest LHX,nuc are allassociated with optical nuclei. The implications of these findings forgalaxy evolution and accretion modalities at the present epoch arediscussed.

Radio sources in low-luminosity active galactic nuclei. IV. Radio luminosity function, importance of jet power, and radio properties of the complete Palomar sample
We present the completed results of a high resolution radio imagingsurvey of all ( 200) low-luminosity active galactic nuclei (LLAGNs) andAGNs in the Palomar Spectroscopic Sample of all ( 488) bright northerngalaxies. The high incidences of pc-scale radio nuclei, with impliedbrightness temperatures ≳107 K, and sub-parsec jetsargue for accreting black holes in ≳50% of all LINERs andlow-luminosity Seyferts; there is no evidence against all LLAGNs beingmini-AGNs. The detected parsec-scale radio nuclei are preferentiallyfound in massive ellipticals and in type 1 nuclei (i.e. nuclei withbroad Hα emission). The radio luminosity function (RLF) of PalomarSample LLAGNs and AGNs extends three orders of magnitude below, and iscontinuous with, that of “classical” AGNs. We find marginalevidence for a low-luminosity turnover in the RLF; nevertheless LLAGNsare responsible for a significant fraction of present day massaccretion. Adopting a model of a relativistic jet from Falcke &Biermann, we show that the accretion power output in LLAGNs is dominatedby the kinetic power in the observed jets rather than the radiatedbolometric luminosity. The Palomar LLAGNs and AGNs follow the samescaling between jet kinetic power and narrow line region (NLR)luminosity as the parsec to kilo-parsec jets in powerful radio galaxies.Eddington ratios {l_Edd} (=L_Emitted/L_Eddington) of≤10-1{-}10-5 are implied in jet models of theradio emission. We find evidence that, in analogy to Galactic black holecandidates, LINERs are in a “low/hard” state (gas poornuclei, low Eddington ratio, ability to launch collimated jets) whilelow-luminosity Seyferts are in a “high” state (gas richnuclei, higher Eddington ratio, less likely to launch collimated jets).In addition to dominating the radiated bolometric luminosity of thenucleus, the radio jets are energetically more significant thansupernovae in the host galaxies, and are potentially able to depositsufficient energy into the innermost parsecs to significantly slow thegas supply to the accretion disk.

Companions to Isolated Elliptical Galaxies: Revisiting the Bothun-Sullivan Sample
We investigate the number of physical companion galaxies for a sample ofrelatively isolated elliptical galaxies. The NASA/IPAC ExtragalacticDatabase (NED) has been used to reinvestigate the incidence of satellitegalaxies for a sample of 34 elliptical galaxies, first investigated byBothun & Sullivan using a visual inspection of Palomar Sky Surveyprints out to a projected search radius of 75 kpc. We have repeatedtheir original investigation using data cataloged in NED. Nine of theseelliptical galaxies appear to be members of galaxy clusters; theremaining sample of 25 galaxies reveals an average of +1.0+/-0.5apparent companions per galaxy within a projected search radius of 75kpc, in excess of two equal-area comparison regions displaced by 150-300kpc. This is significantly larger than the +0.12+/-0.42companions/galaxy found by Bothun & Sullivan for the identicalsample. Making use of published radial velocities, mostly availablesince the completion of the Bothun-Sullivan study, identifies thephysical companions and gives a somewhat lower estimate of +0.4companions per elliptical galaxy. This is still 3 times larger than theoriginal statistical study, but given the incomplete and heterogeneousnature of the survey redshifts in NED, it still yields a firm lowerlimit on the number (and identity) of physical companions. An expansionof the search radius out to 300 kpc, again restricted to sampling onlythose objects with known redshifts in NED, gives another lower limit of4.5 physical companions per galaxy. (Excluding five elliptical galaxiesin the Fornax Cluster, this average drops to 3.5 companions perelliptical.) These physical companions are individually identified andlisted, and the ensemble-averaged radial density distribution of theseassociated galaxies is presented. For the ensemble, the radial densitydistribution is found to have a falloff consistent withρ~R-0.5 out to approximately 150 kpc. For non-FornaxCluster companions the falloff continues out to the 300 kpc limit of thesurvey. The velocity dispersion of these companions is found to reach amaximum of 350 km s-1 at around 120 kpc, after which theyfall at a rate consistent with Keplerian falloff. This falloff may thenindicate the detection of a cut-off in the mass-density distribution inthe elliptical galaxies' dark matter halo at ~100 kpc.

Peculiarities and populations in elliptical galaxies. I. An old question revisited
Morphological peculiarities, as defined from isophote asymmetries andnumber of detected shells, jets or similar features, have been estimatedin a sample of 117 E classified galaxies, and qualified by an ad hocΣ2 index. The overall frequency of ``peculiar'' objects(Pec subsample) is 32.5%. It decreases with the cosmic density of theenvironment, being minimal for the Virgo cluster, the densestenvironment in the sampled volume. This environmental effect is strongerfor galaxies with relatively large Σ2.The Pec subsample objects are compared with ``normal'' objects (Nopsubsample) as regards their basic properties. Firstly, theysystematically deviate from the Fundamental Plane and the Faber-Jacksonrelation derived for the Nop subsample, being too bright for their mass.Secondly, the dust content of galaxies, as estimated from IRAS fluxes,are similar in both subsamples. Third, the same is true of the frequencyof Kinematically Distinct cores (KDC), suggesting that KDC andmorphological peculiarities do not result from the same events in thehistory of E-galaxies.Using the Nop sample alone, we obtain very tight reference relationsbetween stellar population indicators (U-B, B-V, B-R, V-I,Mg2, Hβ, , Mgb) and the central velocitydispersion σ0. The discussion of the residuals of theserelations allows us to classify the Pec galaxies in two families i.e.the YP or NGC 2865 family, and the NP or NGC 3923 one. Galaxies in thefirst group show consistent evidence for a younger stellar populationmixed with the old one, in agreement with classical results (Schweizeret al. \cite{Schweizer1990}; Schweizer & Seitzer\cite{Schweizer1992}). The second group, however, has ``normal``, orreddish, populations. It is remarkable that a fraction (circa 40%) ofmorphologically perturbed objects do not display any signature of ayoung population, either because the event responsible for thepecularity is too ancient, or because it did not produce significantstar formation (or eventually that the young sub-population has highmetallicity).A preliminary attempt is made to interpret the populations of Pecobjects by combining a young Single Stellar Population with a Nopgalaxy, with only limited success, perhaps largely due to uncertaintiesin the SSP indices used.Based in part on observations collected at the Observatoire deHaute-Provence.Figures \ref{fig1}-\ref{fig3} are only available in electronic form athttp://www.edpsciences.orgTable 10 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/423/833

A Search for ``Dwarf'' Seyfert Nuclei. VI. Properties of Emission-Line Nuclei in Nearby Galaxies
We use the database from Paper III to quantify the global and nuclearproperties of emission-line nuclei in the Palomar spectroscopic surveyof nearby galaxies. We show that the host galaxies of Seyferts, LINERs,and transition objects share remarkably similar large-scale propertiesand local environments. The distinguishing traits emerge on nuclearscales. Compared with LINERs, Seyfert nuclei are an order of magnitudemore luminous and exhibit higher electron densities and internalextinction. We suggest that Seyfert galaxies possess characteristicallymore gas-rich circumnuclear regions and hence a more abundant fuelreservoir and plausibly higher accretion rates. The differences betweenthe ionization states of the narrow emission-line regions of Seyfertsand LINERs can be partly explained by the differences in their nebularproperties. Transition-type objects are consistent with being composite(LINER/H II) systems. With very few exceptions, the stellar populationwithin the central few hundred parsecs of the host galaxies is uniformlyold, a finding that presents a serious challenge to starburst orpost-starburst models for these objects. Seyferts and LINERs havevirtually indistinguishable velocity fields as inferred from their linewidths and line asymmetries. Transition nuclei tend to have narrowerlines and more ambiguous evidence for line asymmetries. All threeclasses of objects obey a strong correlation between line width and lineluminosity. We argue that the angular momentum content of circumnucleargas may be an important factor in determining whether a nucleus becomesactive. Finally, we discuss some possible complications for theunification model of Seyfert galaxies posed by our observations.

Physical Coupling of Kazarian Galaxies with Surrounding Galaxies
Results from a statistical study of Kazarian galaxies and the objectssurrounding them are presented. It is shown that: (1) the sample ofKazarian galaxies up to 16m.0 is complete. (2) Roughly 35.7% of theKazarian galaxies are members of clusters, 14.0% of groups, and 13.6% ofbinary systems, while 36.7% are single galaxies. (3) Of the 580 Kazariangalaxies, roughly 61.2% are infrared, 8.8% radio, and 2.8% x-raysources. (4) The relative numbers of Kazarian galaxies for completesamples of I, R, and X in the different groups are systematically higherthan the corresponding numbers for samples of all Kazarian galaxies.

Star Formation Histories of Early-Type Galaxies. I. Higher Order Balmer Lines as Age Indicators
We have obtained blue integrated spectra of 175 nearby early-typegalaxies, covering a wide range in galaxy velocity dispersion andemphasizing those with σ<100 km s-1. Galaxies havebeen observed both in the Virgo Cluster and in lower densityenvironments. The main goals are the evaluation of higher order Balmerlines as age indicators and differences in stellar populations as afunction of mass, environment, and morphology. In this first paper, ouremphasis is on presenting the methods used to characterize the behaviorof the Balmer lines through evolutionary population synthesis models.Lower σ galaxies exhibit a substantially greater intrinsicscatter, in a variety of line-strength indicators, than do higherσ galaxies, with the large intrinsic scatter setting in below aσ of 100 km s-1. Moreover, a greater contrast inscatter is present in the Balmer lines than in the lines of metalfeatures. Evolutionary synthesis modeling of the observed spectralindexes indicates that the strong Balmer lines found primarily among thelow-σ galaxies are caused by young age, rather than by lowmetallicity. Thus we find a trend between the population age and thecentral velocity dispersion, such that low-σ galaxies have youngerluminosity-weighted mean ages. We have repeated this analysis usingseveral different Balmer lines and find consistent results from onespectral indicator to another.

A new catalogue of ISM content of normal galaxies
We have compiled a catalogue of the gas content for a sample of 1916galaxies, considered to be a fair representation of ``normality''. Thedefinition of a ``normal'' galaxy adopted in this work implies that wehave purposely excluded from the catalogue galaxies having distortedmorphology (such as interaction bridges, tails or lopsidedness) and/orany signature of peculiar kinematics (such as polar rings,counterrotating disks or other decoupled components). In contrast, wehave included systems hosting active galactic nuclei (AGN) in thecatalogue. This catalogue revises previous compendia on the ISM contentof galaxies published by \citet{bregman} and \citet{casoli}, andcompiles data available in the literature from several small samples ofgalaxies. Masses for warm dust, atomic and molecular gas, as well asX-ray luminosities have been converted to a uniform distance scale takenfrom the Catalogue of Principal Galaxies (PGC). We have used twodifferent normalization factors to explore the variation of the gascontent along the Hubble sequence: the blue luminosity (LB)and the square of linear diameter (D225). Ourcatalogue significantly improves the statistics of previous referencecatalogues and can be used in future studies to define a template ISMcontent for ``normal'' galaxies along the Hubble sequence. The cataloguecan be accessed on-line and is also available at the Centre desDonnées Stellaires (CDS).The catalogue is available in electronic form athttp://dipastro.pd.astro.it/galletta/ismcat and at the CDS via anonymousftp to\ cdsarc.u-strasbg.fr (130.79.128.5) or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/5

Nuclear Cusps and Cores in Early-Type Galaxies as Relics of Binary Black Hole Mergers
We present an analysis of the central cusp slopes and core parameters ofearly-type galaxies using a large database of surface brightnessprofiles obtained from Hubble Space Telescope observations. We examinethe relation between the central cusp slopes, core parameters, and blackhole masses in early-type galaxies, in light of two models that attemptto explain the formation of cores and density cusps via the dynamicalinfluence of black holes. Contrary to the expectations fromadiabatic-growth models, we find that the cusp slopes do not steepenwith increasing black hole mass fraction. Moreover, a comparison ofkinematic black hole mass measurements with the masses predicted by theadiabatic models shows that they overpredict the masses by a factor of~3. Simulations involving binary black hole mergers predict that boththe size of the core and the central mass deficit correlate with thefinal black hole mass. These relations are qualitatively supported bythe present data.

A catalogue and analysis of X-ray luminosities of early-type galaxies
We present a catalogue of X-ray luminosities for 401 early-typegalaxies, of which 136 are based on newly analysed ROSAT PSPC pointedobservations. The remaining luminosities are taken from the literatureand converted to a common energy band, spectral model and distancescale. Using this sample we fit the LX:LB relationfor early-type galaxies and find a best-fit slope for the catalogue of~2.2. We demonstrate the influence of group-dominant galaxies on the fitand present evidence that the relation is not well modelled by a singlepower-law fit. We also derive estimates of the contribution to galaxyX-ray luminosities from discrete-sources and conclude that they provideLdscr/LB~=29.5ergs-1LBsolar-1. Wecompare this result with luminosities from our catalogue. Lastly, weexamine the influence of environment on galaxy X-ray luminosity and onthe form of the LX:LB relation. We conclude thatalthough environment undoubtedly affects the X-ray properties ofindividual galaxies, particularly those in the centres of groups andclusters, it does not change the nature of whole populations.

Recovering physical parameters from galaxy spectra using MOPED
We derive physical parameters of galaxies from their observed spectrausing MOPED, the optimized data compression algorithm of Heavens,Jimenez & Lahav. Here we concentrate on parametrizing galaxyproperties, and apply the method to the NGC galaxies in Kennicutt'sspectral atlas. We focus on deriving the star formation history,metallicity and dust content of galaxies. The method is very fast,taking a few seconds of CPU time to estimate ~17 parameters, and istherefore specially suited to studying large data sets, such as theAnglo-Australian two-degree-field (2dF) galaxy survey and the SloanDigital Sky Survey (SDSS). Without the power of MOPED, the recovery ofstar formation histories in these surveys would be impractical. InKennicutt's atlas, we find that for the spheroidals a small recent burstof star formation is required to provide the best fit to the spectrum.There is clearly a need for theoretical stellar atmospheric models withspectral resolution better than 1Å if we are to extract all therich information that large redshift surveys contain in their galaxyspectra.

Near-infrared template spectra of normal galaxies: k-corrections, galaxy models and stellar populations
We have observed 28 local galaxies in the wavelength range between 1 and2.4μm in order to define template spectra of the normal galaxiesalong the Hubble sequence. Five galaxies per morphological type wereobserved in most cases, and the resulting rms spread of the normalizedspectra of each class, including both intrinsic differences andobservational uncertainties, is about 1 per cent in K, 2 per cent in Hand 3 per cent in J. Many absorption features can be accuratelymeasured. The target galaxies and the spectroscopic aperture(7×53arcsec2) were chosen to be similar to those usedby Kinney et al. to define template UV and optical spectra. The two datasets are matched in order to build representative spectra between 0.1and 2.4μm. The continuum shape of the optical spectra and therelative normalization of the near-IR ones were set to fit the averageeffective colours of the galaxies of the various Hubble classes. Theresulting spectra are used to compute the k-corrections of the normalgalaxies in the near-IR bands, and to check the predictions of variousspectral synthesis models: while the shape of the continuum is generallywell predicted, large discrepancies are found in the absorption lines.Among the other possible applications, here we also show how thesespectra can be used to place constraints on the dominant stellarpopulation in local galaxies. Spectra and k-corrections are publiclyavailable and can be downloaded from the web site http://www.arcetri.astro.it/~filippo/spectra.

A study of the core of the Shapley Concentration - VI. Spectral properties of galaxies*
We present the results of a study of the spectral properties of galaxiesin the central part of the Shapley Concentration, covering an extremelywide range of densities, from the rich cluster cores to the underlyingsupercluster environment. Our sample is homogeneous, in a well definedmagnitude range (17<=bJ<=18.8) and contains ~1300spectra of galaxies at the same distance, covering an area of~26deg2. These characteristics allowed an accurate spectralclassification that we performed using a principal components analysistechnique. This spectral classification, together with the [Oii]equivalent widths and the star formation rates, has been used to studythe properties of galaxies at different densities: cluster, intercluster(i.e. galaxies in the supercluster but outside clusters) and fieldenvironment. No significant differences are present between samples atlow density regimes (i.e. intercluster and field galaxies). Clustergalaxies, instead, not only have values that are significantly differentfrom the field ones, but also show a dependence on the local density.Moreover, a well defined morphology-density relation is present in thecluster complexes, although these structures are known to be involved inmajor merging events. Also the mean equivalent width of [Oii] shows atrend with the local environment, decreasing at increasing densities,even if it is probably induced by the morphology-density relation.Finally we analysed the mean star formation rate as a function of thedensity, finding again a decreasing trend (at ~3σ significancelevel). Our analysis is consistent with the claim of Balogh et al. thatthe star formation in clusters is depressed.

Strömgren Photometry from z=0 to z~1. I. The Method
We use rest-frame Strömgren photometry to observe clusters ofgalaxies in a self-consistent manner from z=0 to z=0.8. Strömgrenphotometry of galaxies is intended as a compromise between standardbroadband photometry and spectroscopy, in the sense that it is moresensitive to subtle variations in spectral energy distributions than theformer, yet much less time-consuming than the latter. principalcomponent analysis is used to facilitate extraction of information fromthe Strömgren data. By calibrating the principal components usingwell-studied galaxies, as well as models of stellar populations, wedevelop a purely empirical method to detect, and subsequently classify,cluster galaxies at all redshifts smaller than 0.8. Interlopers arediscarded with unprecedented efficiency (up to 100%). The firstprincipal component essentially reproduces the Hubble sequence and canthus be used to determine the global star formation history of clustermembers. The (PC2, PC3) plane allows us to identify Seyfert galaxies(and distinguish them from starbursts) based on photometric colorsalone. In the case of E/S0 galaxies with known redshift, we are able toresolve the age-dust-metallicity degeneracy, albeit at the accuracylimit of our present observations. We use this technique in later papersto probe galaxy clusters well beyond their cores and to faintermagnitudes than spectroscopy can achieve, because the faint end of theluminosity function as well as the outer cluster regions seem to exhibitthe strongest evolutionary trends. We are able to directly compare thesedata over the entire redshift range without a priori assumptions becauseour observations do not require first-order k-corrections. Thecompilation of such data for different cluster types over a wideredshift range is likely to set important constraints on the evolutionof galaxies and on the clustering process.

The z=0.0912 and z=0.2212 Damped Lyα Galaxies along the Sight Line toward the Quasar OI 363
New optical and infrared observations along the sight line toward thequasar OI 363 (0738+313) are presented and discussed. Excluding quasarsselectively observed because they were known to be located behindgas-rich galaxies and systems which lack confirming UV spectroscopicobservations of the actual Lyα line, this sight line presentlycontains the two lowest redshift classical damped Lyα (DLA) quasarabsorption-line systems found in survey mode (i.e., withNHI>=2×1020 atoms cm-2), oneat zabs=0.0912 and the other at zabs=0.2212. Ournew observations suggest identifications for the DLA galaxy counterpartsof these absorption-line systems. The z=0.09 DLA galaxy appears to be anextended low surface brightness galaxy which is easily visible only ininfrared images and shows possible rich morphological structure.Assuming there is no contribution from the quasar host galaxy, we placean upper limit on the K-band luminosity of the z=0.09 DLA galaxy ofLK<=0.13L*K (for a cosmology withH0=65 km s-1 Mpc-1, Ω=1, andΛ=0). More realistically, a subtraction of the quasar nuclear andhost light yields LK~0.08L*K. Theimpact parameter between the galaxy and quasar sight line is very small,b<3.6 kpc (<2"), which makes measurements difficult. The z=0.22DLA galaxy is an early-type dwarf with a K-band luminosity ofLK~0.1L*K at impact parameter b=20 kpc.Its colors are neutral and consistent with star formation models,suggesting its formation epoch was less than a few Gyr ago (i.e.,zf~0.3-0.9). Thus, it is conceivable that its progenitororiginated from the population of ``faint blue galaxies'' seen atmoderate redshifts. In general, these results serve to support mountingevidence that DLA galaxies are drawn from a wide variety of gas-richgalaxy types. Based on observations obtained with the Mayall 4.0 m NOAOTelescope on Kitt Peak, operated for NSF by AURA; the 3.5 m WIYNTelescope on Kitt Peak, also operated for NSF by AURA (WIYN is a jointfacility of University of Wisconsin, Indiana University, YaleUniversity, and NOAO); the NASA 3.0 m IRTF on Mauna Kea, operated forNASA by University of Hawaii; and the Hiltner 2.4 m Telescope on KittPeak, operated by MDM Observatory (this is a joint facility ofUniversity of Michigan, Dartmouth College, Ohio State University, andColumbia University).

Dusty Nuclear Disks and Filaments in Early-Type Galaxies
We examine the dust properties of a nearby distance-limited sample ofearly-type galaxies using WFPC2 of the Hubble Space Telescope. Dust isdetected in 29 out of 67 galaxies (43%), including 12 with small nucleardusty disks. In a separate sample of 40 galaxies biased for thedetection of dust by virtue of their detection in IRAS 100 μm band,dust is found in ~78% of the galaxies, 15 of which contain dusty disks.In those galaxies with detectable dust, the apparent mass of the dustcorrelates with radio and far-infrared luminosity, becoming moresignificant for systems with filamentary dust. A majority of IRAS andradio detections are also associated with dusty galaxies rather thandustless galaxies. This indicates that thermal emission from clumpy,filamentary dust is the main source of the far-IR radiation inearly-type galaxies. Dust in small disklike morphology tends to be wellaligned with the major axis of the host galaxies, while filamentary dustappears to be more randomly distributed with no preference for alignmentwith any major galactic structure. This suggests that, if the dustydisks and filaments have a common origin, the dust originates externallyand requires time to dynamically relax and settle in the galaxypotential in the form of compact disks. More galaxies with visible dustthan without dust display emission lines, indicative of ionized gas,although such nuclear activity does not show a preference for dusty diskover filamentary dust. There appears to be a weak relationship betweenthe mass of the dusty disks and central velocity dispersion of thegalaxy, suggesting a connection with a similar recently recognizedrelationship between the latter and the black hole mass. Based onobservations with the NASA/ESA Hubble Space Telescope, obtained at theSpace Telescope Science Institute, which is operated by the Associationof Universities for Research in Astronomy, Inc., under NASA contractNAS5-26555.

WFPC2 Images of the Central Regions of Early-Type Galaxies. I. The Data
We present high-resolution R-band images of the central regions of 67early-type galaxies obtained with the Wide Field and Planetary Camera 2(WFPC2) aboard the Hubble Space Telescope (HST). This homogeneouslyselected sample roughly doubles the number of early-type galaxies thathave now been imaged at HST resolution and complements similar data onthe central regions of radio galaxies and the bulges of spiral galaxies.Our sample strikingly confirms the complex morphologies of the centralregions of early-type galaxies which have become apparent from previousstudies with HST. In particular, we detect dust, either in the form ofnuclear disks or with a filamentary distribution, in 43% of allgalaxies, in good agreement with previous estimates. In addition, wefind evidence for embedded stellar disks in a remarkably large fractionof 51%. In 14 of those galaxies the disklike structures are misalignedwith the main galaxy, suggesting that they correspond to stellar bars inS0 galaxies. We analyze the luminosity profiles of the galaxies in oursample and classify galaxies according to their central cusp slope. To alarge extent we confirm the results from previous HST surveys in thatearly-type galaxies reveal a clear dichotomy: the bright ellipticals(MB<~-20.5) are generally boxy and have luminosityprofiles that break from steep outer power laws to shallow inner cusps(referred to as ``core'' galaxies). The fainter ellipticals, on theother hand, typically have disky isophotes and luminosity profiles thatlack a clear break and have a steep central cusp (referred to as``power-law'' galaxies). The advantages and shortcomings ofclassification schemes utilizing the extrapolated central cusp slopeγ are discussed, and it is shown that γ might be aninadequate representation for galaxies whose luminosity profile slopechanges smoothly with radius rather than resembling a broken power law.Thus, we introduce a new, alternative parameter and show how thisaffects the classification. In fact, we find evidence for an``intermediate'' class of galaxies that cannot unambiguously beclassified as either core or power-law galaxies and that have centralcusp slopes and absolute magnitudes intermediate between those of coreand power-law galaxies. It is unclear at present, however, whether thesegalaxies make up a physically distinct class or whether distance and/orresolution effects cause them to lose their distinct core or power-lawcharacteristics.

Nearby Optical Galaxies: Selection of the Sample and Identification of Groups
In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.

A Test for Large-Scale Systematic Errors in Maps of Galactic Reddening
Accurate maps of Galactic reddening are important for a number ofapplications, such as mapping the peculiar velocity field in the nearbyuniverse. Of particular concern are systematic errors which vary slowlyas a function of position on the sky, as these would induce spuriousbulk flow. We have compared the reddenings of Burstein & Heiles (BH)and those of Schlegel, Finkbeiner, & Davis (SFD) to independentestimates of the reddening, for Galactic latitudes |b|>10^deg. Ourprimary source of Galactic reddening estimates comes from comparing thedifference between the observed B-V colors of early-type galaxies, andthe predicted B-V color determined from the B-V-Mg_2 relation. We havefitted a dipole to the residuals in order to look for large-scalesystematic deviations. There is marginal evidence for a dipolar residualin the comparison between the SFD maps and the observed early-typegalaxy reddenings. If this is due to an error in the SFD maps, then itcan be corrected with a small (13%) multiplicative dipole term. Weargue, however, that this difference is more likely to be due to a small(0.01 mag) systematic error in the measured B-V colors of the early-typegalaxies. This interpretation is supported by a smaller, independentdata set (globular cluster and RR Lyrae stars), which yields a resultinconsistent with the early-type galaxy residual dipole. BH reddeningsare found to have no significant systematic residuals, apart from theknown problem in the region 230^deg

The distribution of supermassive black holes in the nuclei of nearby galaxies
The growth of supermassive black holes by merging and accretion inhierarchical models of galaxy formation is studied by means of MonteCarlo simulations. A tight linear relation between masses of black holesand masses of bulges arises if the mass accreted by supermassive blackholes scales linearly with the mass-forming stars and if the redshiftevolution of mass accretion tracks closely that of star formation.Differences in redshift evolution between black hole accretion and starformation introduce a considerable scatter in this relation. Anon-linear relation between black hole accretion and star formationresults in a non-linear relation between masses of remnant black holesand masses of bulges. The relation of black hole mass to bulgeluminosity observed in nearby galaxies and its scatter are reproducedreasonably well by models in which black hole accretion and starformation are linearly related but do not track each other in redshift.This suggests that a common mechanism determines the efficiency forblack hole accretion and the efficiency for star formation, especiallyfor bright bulges.

X-ray luminosities for a magnitude-limited sample of early-type galaxies from the ROSAT All-Sky Survey
For a magnitude-limited optical sample (B_T <= 13.5 mag) ofearly-type galaxies, we have derived X-ray luminosities from the ROSATAll-Sky Survey. The results are 101 detections and 192 useful upperlimits in the range from 10^36 to 10^44 erg s^-1. For most of thegalaxies no X-ray data have been available until now. On the basis ofthis sample with its full sky coverage, we find no galaxy with anunusually low flux from discrete emitters. Below log (L_B) ~ 9.2L_⊗ the X-ray emission is compatible with being entirely due todiscrete sources. Above log (L_B) ~ 11.2 L_osolar no galaxy with onlydiscrete emission is found. We further confirm earlier findings that L_xis strongly correlated with L_B. Over the entire data range the slope isfound to be 2.23 (+/- 0.12). We also find a luminosity dependence ofthis correlation. Below log L_x = 40.5 erg s^-1 it is consistent with aslope of 1, as expected from discrete emission. Above this value theslope is close to 2, as expected from gaseous emission. Comparing thedistribution of X-ray luminosities with the models of Ciotti et al.leads to the conclusion that the vast majority of early-type galaxiesare in the wind or outflow phase. Some of the galaxies may have alreadyexperienced the transition to the inflow phase. They show X-rayluminosities in excess of the value predicted by cooling flow modelswith the largest plausible standard supernova rates. A possibleexplanation for these super X-ray-luminous galaxies is suggested by thesmooth transition in the L_x--L_B plane from galaxies to clusters ofgalaxies. Gas connected to the group environment might cause the X-rayoverluminosity.

Arcsecond Positions of UGC Galaxies
We present accurate B1950 and J2000 positions for all confirmed galaxiesin the Uppsala General Catalog (UGC). The positions were measuredvisually from Digitized Sky Survey images with rms uncertaintiesσ<=[(1.2")2+(θ/100)2]1/2,where θ is the major-axis diameter. We compared each galaxymeasured with the original UGC description to ensure high reliability.The full position list is available in the electronic version only.

Galaxy coordinates. II. Accurate equatorial coordinates for 17298 galaxies
Using images of the Digitized Sky Survey we measured coodinates for17298 galaxies having poorly defined coordinates. As a control, wemeasured with the same method 1522 galaxies having accurate coordinates.The comparison with our own measurements shows that the accuracy of themethod is about 6 arcsec on each axis (RA and DEC).

The emission line sequence of normal spiral galaxies
We have analyzed the emission line properties in the integrated spectraof 15 normal spiral galaxies. We show that very clear trends appear whenplotting relevant emission line ratios or equivalent widths as afunction of galaxy spectral types, obtained with a Principal ComponentAnalysis of the continua and absorption features of spectra. Theequivalent widths of all the lines analyzed correlate extremely wellwith spectral types, implying that each of them can be considered a goodindicator of the spectral type in normal galaxies. The position of mostgalaxies of our sample in classical emission line diagnostic diagramsfollows that of individual giant HII regions in spiral galaxies, but forthe earliest type galaxies, the emission line pattern resembles morethat of LINERs. Therefore, the direct interpretation of equivalentwidths in terms of star formation rates would be misleading in suchcases. The observed trends in the emission line ratios as a function ofgalaxy spectral type suggest a decrease of O/H, a decrease of N/O, anincrease of the average effective temperature or ionization parameter,and a decrease of the effective internal extinction of galaxies withincreasing (early to late) spectral type.

Groups of galaxies. III. Some empirical characteristics.
Not Available

A catalogue of Mg_2 indices of galaxies and globular clusters
We present a catalogue of published absorption-line Mg_2 indices ofgalaxies and globular clusters. The catalogue is maintained up-to-datein the HYPERCAT database. The measurements are listed together with thereferences to the articles where the data were published. A codeddescription of the observations is provided. The catalogue gathers 3541measurements for 1491 objects (galaxies or globular clusters) from 55datasets. Compiled raw data for 1060 galaxies are zero-point correctedand transformed to a homogeneous system. Tables 1, 3, and 4 areavailable in electronic form only at the CDS, Strasbourg, via anonymousftp 130.79.128.5. Table 2 is available both in text and electronic form.

Total magnitude, radius, colour indices, colour gradients and photometric type of galaxies
We present a catalogue of aperture photometry of galaxies, in UBVRI,assembled from three different origins: (i) an update of the catalogueof Buta et al. (1995) (ii) published photometric profiles and (iii)aperture photometry performed on CCD images. We explored different setsof growth curves to fit these data: (i) The Sersic law, (ii) The net ofgrowth curves used for the preparation of the RC3 and (iii) A linearinterpolation between the de Vaucouleurs (r(1/4) ) and exponential laws.Finally we adopted the latter solution. Fitting these growth curves, wederive (1) the total magnitude, (2) the effective radius, (3) the colourindices and (4) gradients and (5) the photometric type of 5169 galaxies.The photometric type is defined to statistically match the revisedmorphologic type and parametrizes the shape of the growth curve. It iscoded from -9, for very concentrated galaxies, to +10, for diffusegalaxies. Based in part on observations collected at the Haute-ProvenceObservatory.

The ESO-Sculptor Survey: spectral classification of galaxies with Z < 0.5
Using the ESO-Sculptor galaxy redshift survey data (ESS), we haveextensively tested the Principal Components Analysis (PCA) method toperform the spectral classification of galaxies with z la 0.5. Thismethod allows us to classify all galaxies in an ordered and continuousspectral sequence, which is strongly correlated with the morphologicaltype. The PCA allows to quantify the systematic physical properties ofthe galaxies in the sample, like the different stellar contributions tothe observed light as well as the stellar formation history. We alsoexamine the influence of the emission lines, and the signal-to-noiseratio of the data. This analysis shows that the emission lines play asignificant role in the spectral classification, by tracing the activityand abnormal spectral features of the observed sample. The PCA alsoprovides a powerful tool to filter the noise which is carried by the ESSspectra. By comparison of the ESS PCA spectral sequence with that for aselected sample of Kennicutt galaxies (Kennicutt 1992a,b), we find thatthe ESS sample contains 26% of E/S0, 71% of Sabc and 3% of Sm/Irr. Thetype fractions for the ESS show no significant changes in the redshiftinterval z ~ 0.1-0.5, and are comparable to those found in other galaxysurveys at intermediate redshift. The PCA can be used independently fromany set of synthetic templates, providing a completely objective andunsupervised method to classify spectra. We compare the classificationof the ESS sample given by the PCA, with a chi (2) test between the ESSsample and galaxy templates from Kennicutt (Kennicutt 1992a), and obtainresults in good agreement. The PCA results are also in agreement withthe visual morphological classification carried out for the 35 brightestgalaxies in the survey. Based on observations collected at the EuropeanSouthern Observatory (ESO), La Silla, Chile

Global regularities in integrated galaxy spectra
We have investigated some statistical properties of integrated spectraof galaxies from the Kennicutt spectrophotometric atlas. The input datafor the analysis are galaxy spectra sampled in 1300 bins between 3750and 6500Angstroms. We make use of Principal Component Analysis (PCA) toanalyse the 1300-dimensional space spanned by the spectra. Theirprojection on to the plane defined by the first two principalcomponents, the principal plane, shows that normal galaxies are in aquasi-linear sequence that we call the spectral sequence. We show thatthe spectral sequence is closely related to the Hubble morphologicalsequence. These results are robust in the sense that the reality of thespectral sequence does not depend on data normalization. The existenceof this sequence suggests that a single parameter may describe thespectrum of normal galaxies. We have investigated this hypothesis withthe Bruzual & Charlot models of spectral evolution. We show that,for single-age models (15 Gyr), the spectral sequence can beparametrized by the characteristic star formation time-scales of thedifferent morphological types. By examining the projection ofevolutionary tracks of normal galaxies on to the principal plane, weverify that the spectral sequence is also an evolutionary sequence, withgalaxy spectra evolving from later to earlier spectral types.Considering the close correspondence between the spectral andmorphological sequences, this leads us to speculate that galaxies mayevolve morphologically along the Hubble sequence, from Sm/Im to E.

Enviar un nou article


Enllaços Relacionats

  • - No s'ha trobat enllaços -
Enviar un nou enllaç


Membre dels grups següents:


Dades d'Observació i Astrometria

Constel·lació:Draco
Ascensió Recta:12h41m44.40s
Declinació:+74°25'17.0"
Dimensions aparents:1.479′ × 1.202′

Catàlegs i designacions:
Noms Propis   (Edit)
NGC 2000.0NGC 4648
HYPERLEDA-IPGC 42595

→ Sol·licitar més catàlegs i designacions de VizieR