Főoldal     Alapinformációk     To Survive in the Universe    
Inhabited Sky
    News@Sky     Asztrofotók     Kollekció     Fórum     Blog New!     GYIK     Sajtó     Bejelentkezés  

NGC 1854


Tartalom

Képek

Kép feltöltése

DSS Images   Other Images


Kapcsolódó cikkek

Ages and Metallicities of Extragalactic Globular Clusters from Spectral and Photometric Fits of Stellar Population Synthesis Models
Spectra of galaxies contain an enormous amount of information about therelative mixture of ages and metallicities of constituent stars. Wepresent a comprehensive study designed to extract the maximuminformation from spectra of data quality typical in large galaxysurveys. These techniques are not intended for detailed stellarpopulation studies that use high-quality spectra. We test techniques ona sample of globular clusters, which should consist of single stellarpopulations and provide good test cases, using the Bruzual-Charlothigh-resolution stellar population synthesis models to simultaneouslyestimate the ages and metallicities of 101 globular clusters in M31 andthe Magellanic Clouds. The clusters cover a wide range of ages andmetallicities, 4 Myr

The TP-AGB phase. Lifetimes from C and M star counts in Magellanic Cloud clusters
Using available data for C and M giants with M_bol<-3.6 in MagellanicCloud clusters, we derive limits to the lifetimes for the correspondingevolutionary phases, as a function of stellar mass. The C-star phase isfound to have a duration between 2 and 3 Myr for stars in the mass rangefrom ~1.5 to 2.8 M_ȯ. There is also an indication that the peak ofC-star lifetime shifts to lower masses (from slightly above to slightlybelow 2 Mȯ) as we move from LMC to SMC metallicities.The M-giant lifetimes also peak at ~2 Mȯ in the LMC,with a maximum value of about 4 Myr, whereas in the SMC their lifetimesappear much shorter, but, actually, they are poorly constrained by thedata. These numbers constitute useful constraints to theoretical modelsof the TP-AGB phase. We show that several models in the literatureunderestimate the duration of the C-star phase at LMC metallicities.

Ages and metallicities of star clusters: New calibrations and diagnostic diagrams from visible integrated spectra
We present homogeneous scales of ages and metallicities for starclusters from very young objects, through intermediate-age ones up tothe oldest known clusters. All the selected clusters have integratedspectra in the visible range, as well as reliable determinations oftheir ages and metallicities. From these spectra equivalent widths (EWs)of K Ca II, G band (CH) and Mg I metallic, and Hδ, Hγ andHβ Balmer lines have been measured homogeneously. The analysis ofthese EWs shows that the EW sums of the metallic and Balmer H lines,separately, are good indicators of cluster age for objects younger than10 Gyr, and that the former is also sensitive to cluster metallicity forages greater than 10 Gyr. We propose an iterative procedure forestimating cluster ages by employing two new diagnostic diagrams and agecalibrations based on the above EW sums. For clusters older than 10 Gyr,we also provide a calibration to derive their overall metal contents.

Infrared Surface Brightness Fluctuations of Magellanic Star Clusters
We present surface brightness fluctuations (SBFs) in the near-IR for 191Magellanic star clusters available in the Second Incremental and All SkyData releases of the Two Micron All Sky Survey (2MASS) and compare themwith SBFs of Fornax Cluster galaxies and with predictions from stellarpopulation models as well. We also construct color-magnitude diagrams(CMDs) for these clusters using the 2MASS Point Source Catalog (PSC).Our goals are twofold. The first is to provide an empirical calibrationof near-IR SBFs, given that existing stellar population synthesis modelsare particularly discrepant in the near-IR. Second, whereas mostprevious SBF studies have focused on old, metal-rich populations, thisis the first application to a system with such a wide range of ages(~106 to more than 1010 yr, i.e., 4 orders ofmagnitude), at the same time that the clusters have a very narrow rangeof metallicities (Z~0.0006-0.01, i.e., 1 order of magnitude only). Sincestellar population synthesis models predict a more complex sensitivityof SBFs to metallicity and age in the near-IR than in the optical, thisanalysis offers a unique way of disentangling the effects of age andmetallicity. We find a satisfactory agreement between models and data.We also confirm that near-IR fluctuations and fluctuation colors aremostly driven by age in the Magellanic cluster populations and that inthis respect they constitute a sequence in which the Fornax Clustergalaxies fit adequately. Fluctuations are powered by red supergiantswith high-mass precursors in young populations and by intermediate-massstars populating the asymptotic giant branch in intermediate-agepopulations. For old populations, the trend with age of both fluctuationmagnitudes and colors can be explained straightforwardly by evolution inthe structure and morphology of the red giant branch. Moreover,fluctuation colors display a tendency to redden with age that can befitted by a straight line. For the star clusters only,(H-Ks)=(0.21+/-0.03)log(age)-(1.29+/-0.22) once galaxies areincluded, (H-Ks)=(0.20+/-0.02)log(age)-(1.25+/-0.16).Finally, we use for the first time a Poissonian approach to establishthe error bars of fluctuation measurements, instead of the customaryMonte Carlo simulations.This research has made use of the NASA/ IPAC Infrared Science Archive,which is operated by the Jet Propulsion Laboratory, California Instituteof Technology, under contract with the National Aeronautics and SpaceAdministration.

A statistical study of binary and multiple clusters in the LMC
Based on the Bica et al. (\cite{bica}) catalogue, we studied the starcluster system of the LMC and provide a new catalogue of all binary andmultiple cluster candidates found. As a selection criterion we used amaximum separation of 1farcm4 corresponding to 20 pc (assuming adistance modulus of 18.5 mag). We performed Monte Carlo simulations andproduced artificial cluster distributions that we compared with the realone in order to check how many of the found cluster pairs and groups canbe expected statistically due to chance superposition on the plane ofthe sky. We found that, depending on the cluster density, between 56%(bar region) and 12% (outer LMC) of the detected pairs can be explainedstatistically. We studied in detail the properties of the multiplecluster candidates. The binary cluster candidates seem to show atendency to form with components of similar size. When possible, westudied the age structure of the cluster groups and found that themultiple clusters are predominantly young with only a few cluster groupsolder than 300 Myr. The spatial distribution of the cluster pairs andgroups coincides with the distribution of clusters in general; however,old groups or groups with large internal age differences are mainlylocated in the densely populated bar region. Thus, they can easily beexplained as chance superpositions. Our findings show that a formationscenario through tidal capture is not only unlikely due to the lowprobability of close encounters of star clusters, and thus the evenlower probability of tidal capture, but the few groups with largeinternal age differences can easily be explained with projectioneffects. We favour a formation scenario as suggested by Fujimoto &Kumai (\cite{fk}) in which the components of a binary cluster formedtogether and thus should be coeval or have small age differencescompatible with cluster formation time scales. Table 6 is only availablein electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/391/547

X-Rays from Superbubbles in the Large Magellanic Cloud. VI. A Sample of Thirteen Superbubbles
We present ROSAT observations and analysis of thirteen superbubbles inthe Large Magellanic Cloud. Eleven of these observations have not beenpreviously reported. We have studied the X-ray morphology of thesuperbubbles and have extracted and analyzed their X-ray spectra.Diffuse X-ray emission is detected from each of these superbubbles, andX-ray emission is brighter than that theoretically expected for awind-blown bubble, suggesting that the X-ray emission from thesuperbubbles has been enhanced by interactions between the superbubbleshell and interior supernova remnants. We have also found significantpositive correlations between the X-ray luminosity of a superbubble andits Hα luminosity, expansion velocity, and OB star count. Further,we have found that a large fraction of the superbubbles in the sampleshow evidence of breakout regions, where hot X-ray-emitting gas extendsbeyond the Hα shell.

The Optical Gravitational Lensing Experiment. Cepheids in Star Clusters from the Magellanic Clouds
We present Cepheids located in the close neighborhood of star clustersfrom the Magellanic Clouds. 204 and 132 such stars were found in the LMCand SMC, respectively. The lists of objects were constructed based oncatalogs of Cepheids and star clusters, recently published by theOGLE-II collaboration. Location of selected Cepheids on the skyindicates that many of them are very likely cluster members. Photometricdata of Cepheids and clusters are available from the OGLE Internetarchive.

The Optical Gravitational Lensing Experiment. Catalog of Star Clusters from the Large Magellanic Cloud
We present the catalog of star clusters found in the area of about 5.8square degree in the central regions of the Large Magellanic Cloud. Itcontains data for 745 clusters. 126 of them are new objects. For eachcluster equatorial coordinates, radius, approximate number of membersand cross-identification are provided. Photometric data for all clusterspresented in the catalog and Atlas consisting of finding charts andcolor-magnitude diagrams are available electronically from the OGLEInternet archive.

A Revised and Extended Catalog of Magellanic System Clusters, Associations, and Emission Nebulae. II. The Large Magellanic Cloud
A survey of extended objects in the Large Magellanic Cloud was carriedout on the ESO/SERC R and J Sky Survey Atlases, checking entries inprevious catalogs and searching for new objects. The census provided6659 objects including star clusters, emission-free associations, andobjects related to emission nebulae. Each of these classes containsthree subclasses with intermediate properties, which are used to infertotal populations. The survey includes cross identifications amongcatalogs, and we present 3246 new objects. We provide accuratepositions, classification, and homogeneous measurements of sizes andposition angles, as well as information on cluster pairs andhierarchical relation for superimposed objects. This unification andenlargement of catalogs is important for future searches of fainter andsmaller new objects. We discuss the angular and size distributions ofthe objects of the different classes. The angular distributions show twooff-centered systems with different inclinations, suggesting that theLMC disk is warped. The present catalog together with its previouscounterpart for the SMC and the inter-Cloud region provide a totalpopulation of 7847 extended objects in the Magellanic System. Theangular distribution of the ensemble reveals important clues on theinteraction between the LMC and SMC.

N 105 in the Large Magellanic Cloud: a newly evolved H II complex
The detailed radial velocity field of the H ii region N 105, in theLarge Magellanic Cloud, has been obtained for the Hα and [Oiii]5007 lines with a spatial sampling of 9'' and spectral ones of 16and 7 km s(-1) respectively. The line profiles present complex splittingand broadening in several places. The peculiar velocity field andmorphology indicate that N 105 contains four bubble shaped nebulae, andtwo bright distinct quasi spherical H ii regions, more or less coeval,embedded inside another large shell nebula. They are formed essentiallyby the action of the stellar winds of a few exciting stars, born deepinside their parental cloud. This result is deduced from the energyadded to the ionized gas by the stellar winds of early type stars andfrom dynamical simulations combining the effects of stellar winds withthose of high density gradients inside the neutral gas. The size and themorphology of the H ii region are conditioned by the depth inside thenatal cloud; the observed dynamic evolution of the H ii region starts atthe moment of blow out of the molecular cloud. The kinematics agreeswith the expected results from the stellar content and from themolecular studies. The positions of masers and of an infra-red (IR)source inside N 105 and the structure of this nebula suggest that suchan IR source may be the consequence of star formation triggered by thesurrounding wind pressure due to the progenitors of the presentlyevolved stars. Based on observations done at La Silla (ESO)

The evolution of theV-Kcolours of single stellar populations
Models of evolutionary population synthesis of galaxies rely on theproperties of the so-called single stellar populations (SSP). In thispaper, we discuss how the integrated near-infrared colours, andespecially V-K, of SSPs evolve with age and metallicity. Some of theuncertainties associated with the properties of the underlying stellarmodels are thoroughly discussed. Our models include all the relevantstellar evolutionary phases, with particular attention being dedicatedto the asymptotic giant branch (AGB), which plays a fundamental role inthe evolution of the near-infrared part of the spectrum. First, wepresent the effects that different formulations for the mass-loss ratesproduce on the final remnant mass (i.e., on the initial-final massrelation), and hence on the AGB-termination luminosity and the relativecontribution of these stars to the integrated light. The results for theevolution of the V-K colour are very different depending on the choiceof the mass-loss prescription; the same is true also for the B-V colourin the case of low-metallicity SSPs. Secondly, we describe the changesoccurring in the integrated colours at the onset of the AGB and redgiant (RGB) branches. According to the classical formalism for the AGBevolution, the onset of this evolutionary phase is marked by a colourjump to the red, the amplitude of which is shown here to be highlydependent on the metallicity and mass-loss rates adopted in the models.We then consider the effect of the overluminosity with respect to thestandard core mass-luminosity relation that occurs in the most massiveAGB stars. Different simplified formulations for this effect are testedin the models; they cause a smoothing of the colour evolution in the agerange at which the AGB starts to develop, rather than a splitting of thecolour jump into two separate events. On the other hand, we find that atemporary red phase takes place ~1.5x10^8 yr after the RGB develops.Thanks to the transient nature of this feature, the onset of the RGB isprobably not able to cause marked features in the spectral evolution ofgalaxies. We then discuss the possible reasons for the transition of V-Kcolours (from ~1.5 to 3) that takes place in LMC clusters of SWB typeIV. A revision of the ages attributed to the single clusters revealsthat the transition may not be as fast as originally suggested. Thecomparison of the data with the models indicates that the transitionresults mainly from the development of the AGB. A gradual (or delayed)transition of the colours, as predicted by models which include theoverluminosity of the most massive AGB stars, seems to describe the databetter than the sudden colour jump predicted by classical models.

Cepheids in MC Clusters: New Observations
Not Available

The ellipticities of Galactic and Large Magellanic Cloud globular clusters
The correlations between the ellipticity and the age and mass of LMCglobular clusters are examined, and both are found to be weak. It isconcluded that neither of these properties is mainly responsible for theobserved differences in the LMC and Galactic globular clusterellipticity distributions. Most importantly, age cannot be the primaryfactor in the LMC-Galaxy ellipticity differences, even if there is arelationship, as even the oldest LMC clusters are more elliptical thantheir Galactic counterparts. The strength of the tidal field of theparent galaxy is proposed as the dominant factor in determining theellipticities of that galaxy's globular clusters. A strong tidal fieldrapidly destroys velocity anisotropies in initially triaxial, rapidlyrotating elliptical globular clusters. A weak tidal field, however, isunable to remove these anisotropies and the clusters remain close totheir initial shapes.

Carbon stars in LMC clusters revisited.
Abstract image available at:http://adsabs.harvard.edu/abs/1996A&A...316L...1M

Mid-infrared properties of globular clusters using the IRAS data base
We present an analysis of the mid-IR properties of 18 globular clusters(GCs) [15 in the Galaxy and three in the Large Magellanic Cloud (LMC)]using the IRAS photometric data at 12 and 25 mum. Eight of the nineGalactic GCs with central escape velocities greater than 50 km s^-1 haveIRAS sources within a radius of 60 arcsec from the centre, in agreementwith the expectation that interstellar gas and dust should indeed bepresent in the central regions of the most massive clusters owing tomass-loss processes occurring in the late stages of the stellarevolution. No other significant correlation is found between IRAS sourceincidence and any intrinsic GC parameters. Warm dust (T~300K) isdetectable mostly around unresolved giant stars, but in three massiveGCs it is also present as diffuse emission. However, most of the dustmight be cold (T<50K) and it was thus notdetected by IRAS because of its limited sensitivity at 60 and 100 mum.The inferred mass-loss rates and statistical considerations arecompatible with a non-steady mass-loss process with several episodes ofejection lasting a few times 10^5 yr.

Ultraviolet ages of young clusters in the Magellanic Clouds.
Following a previous investigation on the integrated UV colours ofstellar clusters (Barbero et al. 1990), we study the calibration of theultraviolet colour index C(15-31) in terms of cluster age, usingobservations by the International Ultraviolet Explorer of 29 young andpopulous clusters of the Large Magellanic Cloud (LMC), and of the SmallMagellanic Cloud (SMC). The study is limited to the range of ages5x10^6^ to 8x10^8^yr, which is free from contamination by HorizontalBranch stars. It is shown that in this range of ages the theoreticalsequence C(15-31) vs. age agrees well with the one derived by combiningthe observed colour index C(15-31) with the ages determined viaisochrone fitting to the colour-magnitude diagrams while systematicdifferences, which are discussed on here, exist with respect to the agecalibration by Meurer, Cacciari and Freeman (1990). The present agecalibration C(15-31) vs. log(t), provided in an analytical form, isfinally used to determine the ages of the 29 clusters in our sample,including 13 objects for which no determination was available via theisochrone fitting method.

Integrated UBV Photometry of 624 Star Clusters and Associations in the Large Magellanic Cloud
We present a catalog of integrated UBV photometry of 504 star clustersand 120 stellar associations in the LMC, part of them still embedded inemitting gas. We study age groups in terms of equivalent SWB typesderived from the (U-B) X (B-V) diagram. The size of the spatialdistributions increases steadily with age (SWB types), whereas adifference of axial ratio exists between the groups younger than 30 Myrand those older, which implies a nearly face-on orientation for theformer and a tilt of ~45^deg^ for the latter groups. Asymmetries arepresent in the spatial distributions, which, together with thenoncoincidence of the centroids for different age groups, suggest thatthe LMC disk was severely perturbed in the past.

Blue-violet spectral evolution of young Magellanic Cloud clusters
We study the integrated spectral evolution in the blue-violet range of97 blue star clusters in the Magellanic Clouds, from those associatedwith gas emission to those as old as a few hundred Myr. Some clustersare dominated by the flux of those massive stars that pass throughevolutionary stages such as Wolf-Rayet, Luminous Blue Variable, Be, andsupergiant stars of different temperatures. The relationships amongspectral features such as absorption and emission lines, Balmerdiscontinuity and Balmer continuum are used to study the spectralevolution of the clusters. Finally, we sort into groups spectra ofsimilar evolutionary stages, creating a template spectral library withpossible applications in stellar populations syntheses of star-forminggalaxies and in the spectral simulation of bursts of star formation withdifferent mean ages and durations.

Variable Stars in Magellanic Cloud Clusters. II. NGC 1850
Abstract image available at:http://adsabs.harvard.edu/abs/1995ApJ...449..164S

Ultraviolet spectral evolution of star clusters in the IUE library.
The ultraviolet integrated spectra of star clusters and H II regions inthe IUE library have been classified into groups based on their spectralappearance, as well as on age and metallicity information from otherstudies. We have coadded the spectra in these groups according to theirS/N ratio, creating a library of template spectra for futureapplications in population syntheses in galaxies. We define spectralwindows for equivalent width measurements and for continuum tracings.These measurements in the spectra of the templates are studied as afunction of age and metallicity. We indicate the windows with a strongmetallicity dependence, at different age stages.

Metal abundances of magellanic cloud clusters
In this paper we explore the range of chemical abundances of stars inclusters of the small magellanic cloud (SMC) and the large magellaniccloud (LMC). The analysis is done by comparing synthetic spectra withspectra of stars taken at a medium resolution. We do not confirm thatNGC 330 and NGC 1818 are underabundant with respect to field stars ofthe SMC and the LMC. Photometric colors do not fit correctly the deducedtemperatures; this is probably due to interstellar extinction,unresolved double stars and/or to an important foreground of unresolvedhot blue stars. The smooth age-metallicity abundance relation of the SMCestablished by photometry is restored. In the LMC, a similar result isproposed with a dispersion amongst the metal abundance of the studiedLMC clusters.

Investigation of variable stars in the region of NGC 1854 in the Large Magellanic Cloud
Light changes of 48 variable stars in a 0.9 x 0.9 deg field with thecenter at 05 h 10 m - 68.9 deg in the LMC cluster NGC 1854 are studied.Refined values of Cepheid periods are obtained, and possible changeswhen compared with the data of Payne-Gaposchkin (1970), obtained in thefirst half of the century, are identified. The calculated distancemodulus of LMC m-M is 18.08 +/- 0.14 m if the period-luminosity relationof Kraft (1961) for Cepheids of the galaxy is applied.

Tuning the Cepheid distance scale
Ongoing observational programs (both from the ground and space) willprovide a significantly larger sample of galaxies with well-studiedCepheids both within the Local Group and in more distant galaxies.Recent efforts in the calibration of the Cepheid distance scaleutilizing Cepheids in star clusters in the Galaxy and in the MagellanicClouds are described. Some of the significant advantages of utilizingLMC Cepheids in particular are emphasized, and the current status of thefield is summarized.

Bar star clusters in the LMC - Formation history from UBV integrated photometry
The sample of star clusters in the LMC Bar region with integrated UBVphotometry was enlarged by approximately a factor four, totaling 129objects. The (B-V) histogram gap between blue and red clustersdisappears with this deeper sample. Age groups in terms of equivalentSWB types were derived and their spatial distribution studied. Clustersyounger than t about 200 Myr are not homogeneously distributed throughthe bar. In particular a strong star forming event at t about 100 Myrwas detected in the eastern part of the Bar, consisting of a compactgrouping of seven coeval clusters around NGC 2058 and NGC 2065. Also, 11close pairs and two trios are analyzed, and the colors indicate thatonly four pairs are clearly not coeval.

The structure and evolution of rich star clusters in the Large Magellanic Cloud
The present evaluation of surface brightness profiles andcolor-magnitude diagrams for 18 rich star clusters in the LMC, whoseages range from 10 million to 1 billion years, notes that while theprofiles of the older clusters are representable by models withKing-like cores, those of many younger clusters resist such modeling invirtue of bumps, sharp 'shoulders', and central dips. If the clustershave undergone violent relaxation, then the small cores of the youngestones may be indicative of formation from relatively 'cool' initialconditions. The sharp shoulders would then point point toward 'warmer'initial conditions, although they are alternatively explainable assignatures of merging subcondensations.

Analysis of the UV spectra of young clusters of the Large Magellanic Cloud
UV and visual spectral energy distributions of young generations havebeen synthesized from evolutionary tracks in the HR diagram and modelatmospheres. The influence of several parameters has also been analyzed.Their UV portions have been checked with the UV spectra of 24 clustersof the LMC obtained by Cassatella et al. (1987). The models generallyagree well with the observations and make it possible to derive ages forvarious assumed abundances. Ages thus derived have been compared, in anage-age diagram, with those obtained from the integrated UBV photometry.While there are no systematic differences between these two agedeterminations, a fraction of clusters displays a large scatter, largerthan what is expected from the observational errors alone. Possiblecauses for this scatter are briefly analyzed.

Near-infrared spectral evolution of blue LMC clusters : a comparison with galactic open clusters.
Abstract image available at:http://adsabs.harvard.edu/abs/1990RMxAA..21..202B

Blue Magellanic clusters - Near-infrared spectral evolution
New integrated spectra in the range 5600-10,000 A are presented for 28LMC and 3 SMC young star clusters. The equivalent widths (W) ofprominent features and the continuum distribution are measured. Theanalysis, supplemented by 8 additional LMC clusters from previousstudies, indicates that the red supergiant phase is indeed verytime-peaked, occuring from 7 to 12 Myr. In addition to the previous caseof NGC 2004, it is found that NGC 1805, NGC 1994, NGC 2002, NGC 2098,and NGC 2100 (as well as NGC 2011 to a lesser extent) are undergoingthis phase. The red supergiant phase is clearly denoted by strong TiObands and Ca II triplet as well as a flat continuum or (in extremecases) a continuum with positive slope above 6000 A.

Ultraviolet colors as age indicators for LMC clusters
Empirical correlations are found between log ages and the intrinsicultraviolet colors for 27 LMC clusters. The problems and limitations ofusing these correlations as age indicators for LMC clusters and otherstellar populations are discussed. The correlations are used to estimatethe ages of two LMC clusters of unknown age (NGC 1968 and NGC 1974) andthe nuclei of two nearby blue compact dwarf galaxies (NGC 1705 and NGC5253). For the latter two objects optical- and ultraviolet-based ageestimates are in good agreement.

The asymptotic giant branch of Magellanic Cloud clusters
The present search for carbon and M-type asymptotic giant branch (AGB)stars in the 39 clusters of the Magellanic Clouds has yieldedidentifications and near-IR photometry for about 400 such stars. TheSearle et al. (1980) cluster-age-related classification scheme is abasic element of the present analysis of these data. In a C-M diagram,the cluster M stars shift steadily redward as one proceeds from clustersof SWB type I to VI, due to the increasing age of the clusters along thesequence. Luminous carbon stars are present only in SWB IV-VI clusters,and are easily distinguished from M stars by their color and luminosity.

Új cikk hozzáadása


Kapcsolódó hivatkozások

  • - (nincs kapcsolódó hivatkozás) -
Új link hozzáadása


Besorolás csoportokba:


Pozíciós és asztrometriai adatok

Csillagkép:Aranyhal
Rektaszcenzió:05h09m20.10s
Deklináció:-68°50'52.8"
Vizuális fényesség:10

Katalógusok és elnevezések:
Megfelelő nevek   (Edit)
NGC 2000.0NGC 1854

→ További katalógusok és elnevezések lekérése VizieR-ből