Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 1872



Upload your image

DSS Images   Other Images

Related articles

Ages and Metallicities of Extragalactic Globular Clusters from Spectral and Photometric Fits of Stellar Population Synthesis Models
Spectra of galaxies contain an enormous amount of information about therelative mixture of ages and metallicities of constituent stars. Wepresent a comprehensive study designed to extract the maximuminformation from spectra of data quality typical in large galaxysurveys. These techniques are not intended for detailed stellarpopulation studies that use high-quality spectra. We test techniques ona sample of globular clusters, which should consist of single stellarpopulations and provide good test cases, using the Bruzual-Charlothigh-resolution stellar population synthesis models to simultaneouslyestimate the ages and metallicities of 101 globular clusters in M31 andthe Magellanic Clouds. The clusters cover a wide range of ages andmetallicities, 4 Myr

Infrared Surface Brightness Fluctuations of Magellanic Star Clusters
We present surface brightness fluctuations (SBFs) in the near-IR for 191Magellanic star clusters available in the Second Incremental and All SkyData releases of the Two Micron All Sky Survey (2MASS) and compare themwith SBFs of Fornax Cluster galaxies and with predictions from stellarpopulation models as well. We also construct color-magnitude diagrams(CMDs) for these clusters using the 2MASS Point Source Catalog (PSC).Our goals are twofold. The first is to provide an empirical calibrationof near-IR SBFs, given that existing stellar population synthesis modelsare particularly discrepant in the near-IR. Second, whereas mostprevious SBF studies have focused on old, metal-rich populations, thisis the first application to a system with such a wide range of ages(~106 to more than 1010 yr, i.e., 4 orders ofmagnitude), at the same time that the clusters have a very narrow rangeof metallicities (Z~0.0006-0.01, i.e., 1 order of magnitude only). Sincestellar population synthesis models predict a more complex sensitivityof SBFs to metallicity and age in the near-IR than in the optical, thisanalysis offers a unique way of disentangling the effects of age andmetallicity. We find a satisfactory agreement between models and data.We also confirm that near-IR fluctuations and fluctuation colors aremostly driven by age in the Magellanic cluster populations and that inthis respect they constitute a sequence in which the Fornax Clustergalaxies fit adequately. Fluctuations are powered by red supergiantswith high-mass precursors in young populations and by intermediate-massstars populating the asymptotic giant branch in intermediate-agepopulations. For old populations, the trend with age of both fluctuationmagnitudes and colors can be explained straightforwardly by evolution inthe structure and morphology of the red giant branch. Moreover,fluctuation colors display a tendency to redden with age that can befitted by a straight line. For the star clusters only,(H-Ks)=(0.21+/-0.03)log(age)-(1.29+/-0.22) once galaxies areincluded, (H-Ks)=(0.20+/-0.02)log(age)-(1.25+/-0.16).Finally, we use for the first time a Poissonian approach to establishthe error bars of fluctuation measurements, instead of the customaryMonte Carlo simulations.This research has made use of the NASA/ IPAC Infrared Science Archive,which is operated by the Jet Propulsion Laboratory, California Instituteof Technology, under contract with the National Aeronautics and SpaceAdministration.

Testing stellar population models with star clusters in the Large Magellanic Cloud
We present high signal-to-noise ratio integrated spectra of 24 starclusters in the Large Magellanic Cloud (LMC), obtained using the FLAIRspectrograph at the UK Schmidt telescope. The spectra have been placedon to the Lick/IDS system in order to test the calibration of SimpleStellar Population (SSP) models. We have compared the SSP-predictedmetallicities of the clusters with those from the literature,predominantly taken from the Ca-triplet spectroscopy of Olszewski et al.(1991). We find that there is good agreement between the metallicitiesin the range -2.10 <=[Fe/H]<= 0. However, the Mg2 index(and to a lesser degree Mg b) systematically predict highermetallicities (up to +0.5 dex higher) than . Among thepossible explanations for this are that the LMC clusters possess[α/Fe] > 0. Metallicities are presented for eleven LMC clusterswhich have no previous measurements. We compare SSP ages for theclusters, derived from the Hβ, Hγ and Hδ Lick/IDSindices, with the available literature data, and find good agreement forthe vast majority. This includes six old globular clusters in oursample, which have ages consistent with their HST colour-magnitudediagram (CMD) ages and/or integrated colours. However, two globularclusters, NGC 1754 and NGC 2005, identified as old (~15 Gyr) on thebasis of HST CMDs, have Hβ line-strengths which lead ages that aretoo low (~8 and ~6 Gyr respectively). These findings are inconsistentwith their CMD-derived values at the 3σ level. Comparison betweenthe horizontal branch morphology and the Balmer line strengths of theseclusters suggests that the presence of blue horizontal branch stars hasincreased their Balmer indices by up to ~1.0 Å. We conclude thatthe Lick/IDS indices, used in conjunction with contemporary SSP models,are able to reproduce the ages and metallicities of the LMC clustersreassuringly well. The required extrapolations of the fitting functionsand stellar libraries in the models to lower ages and low metallicitiesdo not lead to serious systematic errors. However, owing to thesignificant contribution of horizontal branch stars to Balmer indices,SSP model ages derived for metal-poor globular clusters are ambiguouswithout a priori knowledge of horizontal branch morphology.

The Optical Gravitational Lensing Experiment. Catalog of Star Clusters from the Large Magellanic Cloud
We present the catalog of star clusters found in the area of about 5.8square degree in the central regions of the Large Magellanic Cloud. Itcontains data for 745 clusters. 126 of them are new objects. For eachcluster equatorial coordinates, radius, approximate number of membersand cross-identification are provided. Photometric data for all clusterspresented in the catalog and Atlas consisting of finding charts andcolor-magnitude diagrams are available electronically from the OGLEInternet archive.

Star Clusters in Local Group Galaxies
Not Available

A Revised and Extended Catalog of Magellanic System Clusters, Associations, and Emission Nebulae. II. The Large Magellanic Cloud
A survey of extended objects in the Large Magellanic Cloud was carriedout on the ESO/SERC R and J Sky Survey Atlases, checking entries inprevious catalogs and searching for new objects. The census provided6659 objects including star clusters, emission-free associations, andobjects related to emission nebulae. Each of these classes containsthree subclasses with intermediate properties, which are used to infertotal populations. The survey includes cross identifications amongcatalogs, and we present 3246 new objects. We provide accuratepositions, classification, and homogeneous measurements of sizes andposition angles, as well as information on cluster pairs andhierarchical relation for superimposed objects. This unification andenlargement of catalogs is important for future searches of fainter andsmaller new objects. We discuss the angular and size distributions ofthe objects of the different classes. The angular distributions show twooff-centered systems with different inclinations, suggesting that theLMC disk is warped. The present catalog together with its previouscounterpart for the SMC and the inter-Cloud region provide a totalpopulation of 7847 extended objects in the Magellanic System. Theangular distribution of the ensemble reveals important clues on theinteraction between the LMC and SMC.

The evolution of theV-Kcolours of single stellar populations
Models of evolutionary population synthesis of galaxies rely on theproperties of the so-called single stellar populations (SSP). In thispaper, we discuss how the integrated near-infrared colours, andespecially V-K, of SSPs evolve with age and metallicity. Some of theuncertainties associated with the properties of the underlying stellarmodels are thoroughly discussed. Our models include all the relevantstellar evolutionary phases, with particular attention being dedicatedto the asymptotic giant branch (AGB), which plays a fundamental role inthe evolution of the near-infrared part of the spectrum. First, wepresent the effects that different formulations for the mass-loss ratesproduce on the final remnant mass (i.e., on the initial-final massrelation), and hence on the AGB-termination luminosity and the relativecontribution of these stars to the integrated light. The results for theevolution of the V-K colour are very different depending on the choiceof the mass-loss prescription; the same is true also for the B-V colourin the case of low-metallicity SSPs. Secondly, we describe the changesoccurring in the integrated colours at the onset of the AGB and redgiant (RGB) branches. According to the classical formalism for the AGBevolution, the onset of this evolutionary phase is marked by a colourjump to the red, the amplitude of which is shown here to be highlydependent on the metallicity and mass-loss rates adopted in the models.We then consider the effect of the overluminosity with respect to thestandard core mass-luminosity relation that occurs in the most massiveAGB stars. Different simplified formulations for this effect are testedin the models; they cause a smoothing of the colour evolution in the agerange at which the AGB starts to develop, rather than a splitting of thecolour jump into two separate events. On the other hand, we find that atemporary red phase takes place ~1.5x10^8 yr after the RGB develops.Thanks to the transient nature of this feature, the onset of the RGB isprobably not able to cause marked features in the spectral evolution ofgalaxies. We then discuss the possible reasons for the transition of V-Kcolours (from ~1.5 to 3) that takes place in LMC clusters of SWB typeIV. A revision of the ages attributed to the single clusters revealsthat the transition may not be as fast as originally suggested. Thecomparison of the data with the models indicates that the transitionresults mainly from the development of the AGB. A gradual (or delayed)transition of the colours, as predicted by models which include theoverluminosity of the most massive AGB stars, seems to describe the databetter than the sudden colour jump predicted by classical models.

Mid-infrared properties of globular clusters using the IRAS data base
We present an analysis of the mid-IR properties of 18 globular clusters(GCs) [15 in the Galaxy and three in the Large Magellanic Cloud (LMC)]using the IRAS photometric data at 12 and 25 mum. Eight of the nineGalactic GCs with central escape velocities greater than 50 km s^-1 haveIRAS sources within a radius of 60 arcsec from the centre, in agreementwith the expectation that interstellar gas and dust should indeed bepresent in the central regions of the most massive clusters owing tomass-loss processes occurring in the late stages of the stellarevolution. No other significant correlation is found between IRAS sourceincidence and any intrinsic GC parameters. Warm dust (T~300K) isdetectable mostly around unresolved giant stars, but in three massiveGCs it is also present as diffuse emission. However, most of the dustmight be cold (T<50K) and it was thus notdetected by IRAS because of its limited sensitivity at 60 and 100 mum.The inferred mass-loss rates and statistical considerations arecompatible with a non-steady mass-loss process with several episodes ofejection lasting a few times 10^5 yr.

Integrated UBV Photometry of 624 Star Clusters and Associations in the Large Magellanic Cloud
We present a catalog of integrated UBV photometry of 504 star clustersand 120 stellar associations in the LMC, part of them still embedded inemitting gas. We study age groups in terms of equivalent SWB typesderived from the (U-B) X (B-V) diagram. The size of the spatialdistributions increases steadily with age (SWB types), whereas adifference of axial ratio exists between the groups younger than 30 Myrand those older, which implies a nearly face-on orientation for theformer and a tilt of ~45^deg^ for the latter groups. Asymmetries arepresent in the spatial distributions, which, together with thenoncoincidence of the centroids for different age groups, suggest thatthe LMC disk was severely perturbed in the past.

Blue-violet spectral evolution of young Magellanic Cloud clusters
We study the integrated spectral evolution in the blue-violet range of97 blue star clusters in the Magellanic Clouds, from those associatedwith gas emission to those as old as a few hundred Myr. Some clustersare dominated by the flux of those massive stars that pass throughevolutionary stages such as Wolf-Rayet, Luminous Blue Variable, Be, andsupergiant stars of different temperatures. The relationships amongspectral features such as absorption and emission lines, Balmerdiscontinuity and Balmer continuum are used to study the spectralevolution of the clusters. Finally, we sort into groups spectra ofsimilar evolutionary stages, creating a template spectral library withpossible applications in stellar populations syntheses of star-forminggalaxies and in the spectral simulation of bursts of star formation withdifferent mean ages and durations.

Stellar evolution on the asymptotic giant branch: some actualities.
Not Available

Bar star clusters in the LMC - Formation history from UBV integrated photometry
The sample of star clusters in the LMC Bar region with integrated UBVphotometry was enlarged by approximately a factor four, totaling 129objects. The (B-V) histogram gap between blue and red clustersdisappears with this deeper sample. Age groups in terms of equivalentSWB types were derived and their spatial distribution studied. Clustersyounger than t about 200 Myr are not homogeneously distributed throughthe bar. In particular a strong star forming event at t about 100 Myrwas detected in the eastern part of the Bar, consisting of a compactgrouping of seven coeval clusters around NGC 2058 and NGC 2065. Also, 11close pairs and two trios are analyzed, and the colors indicate thatonly four pairs are clearly not coeval.

The evolution of carbon stars in the Magellanic Clouds
This study presents JHK photometric data for over 100 field stars in theSMC and for 10 in the Large Cloud together with spectroscopic resultsfor about half of them. In the Small Cloud carbon stars were found athigher temperatures and lower luminosities than previously observed. Thefaintest are below the top of the red giant branch. The medium- andlow-luminosity C stars in the M-C transition zone have a low C2 content.At these luminosities, most of the J-type stars are found close to theC2-poor stars in the HR diagram. Their C2 content is about as high as inthe coolest, most evolved C stars. The present observations of carbonstars in the SMC show that they cover a range in M(bo) from -3 to 5.9mag. The transitions from M to C via S appear to occur in both Clouds ata rather well-defined range in M(bol) for SWB and classes IV and V.

The structure and evolution of rich star clusters in the Large Magellanic Cloud
The present evaluation of surface brightness profiles andcolor-magnitude diagrams for 18 rich star clusters in the LMC, whoseages range from 10 million to 1 billion years, notes that while theprofiles of the older clusters are representable by models withKing-like cores, those of many younger clusters resist such modeling invirtue of bumps, sharp 'shoulders', and central dips. If the clustershave undergone violent relaxation, then the small cores of the youngestones may be indicative of formation from relatively 'cool' initialconditions. The sharp shoulders would then point point toward 'warmer'initial conditions, although they are alternatively explainable assignatures of merging subcondensations.

Core expansion in young star clusters in the Large Magellanic Cloud
The core radii of 18 rich star clusters in the LMC with ages from 10 Myrto 1 Gyr. Data for an additional 17 clusters with ages from 1 Myr to 10Gyr are available in the literature. The combined sample shows that thecore radii increase from about 0 to about 5 pc between about 1 Myr and 1Gyr, and then begin to decrease again. The expansion of the cores isprobably driven by mass loss from evolving stars. Models of clusterevolution show that the rate of increase in core radius is sensitive tothe slope of the initial mass function. The observed core radius-agerelation for the LMC clusters favors an intial mass function with slopeslightly flatter than the Salpeter value.

The evolution of the Magellanic Clouds. I - The ages of globular clusters
Theoretical and observed maximum luminosities of AGB stars in theMagellanic Cloud clusters are compared in order to obtain cluster ageestimations. The ages of 10 clusters in the SMC and 25 in the LMC areconsidered for the cases of several rates of mass loss by AGB stars. Itis demonstrated that discrepancies between ages derived from AGB peakluminosities and from the Main-Sequence turn off and maximum luminositycan be accounted for by the intensive mass loss during the AGBevolutionary phase.

Tha asymptotic branch of giants in the Magellanic clouds.
Not Available

Observed dynamical parameters of the disk clusters of the LMC. I
A study of the observed dynamical parameters of 32 globular clusters ofthe LMC disk has been carried out by means of star counts. The clusterswere measured on a set of three plates (J, V, I) taken with the 1.2 mU.K. Schmidt Telescope. The derived tidal radii were all found to belarge within a very narrow range. As a consequence the range of thetotal masses was found to be very narrow as well. These two parametersare large in comparison to those of the disk young clusters of thegalaxy but they are similar to the dimensions of the halo galacticglobulars.

Magellanic Cloud globular cluster ages
Comparison of peak luminosities observed for asymptotic giant branch(AGB) stars in Magellanic Cloud globular clusters against theoreticalvalues yields age-estimates for 12 SMC and 22 LMC clusters. Theallowance for intensive mass loss during the AGB evolutionary phasebrings these ages into agreement with those based on the clustercolor-magnitude diagrams. Clusters have developed differently in the twoClouds.

Age calibration and age distribution for rich star clusters in the Large Magellanic Cloud
An empirical relation is presented for estimating the ages of rich starclusters in the Large Magellanic Cloud (LMC), to within a factor ofabout 2, from their integrated UBV colors. The calibration is based onpublished ages for 58 LMC clusters derived from main-sequencephotometry, integrated spectra, or the extent of the asymptotic giantbranches. Using stellar population models, a sample of LMC clusters moremassive than about 10,000 solar masses is isolated, which is correctedfor incompleteness as a function of magnitude. An unbiased agedistribution for three clusters is then determined. The number ofclusters decreases with increasing age in a manner that is qualitativelysimilar to the age distribution for the open clusters in our Galaxy. TheLMC age distribution is, however, flatter, and the median age of theclusters is greater. If the formation rate has been approximatelyconstant over the history of the two galaxies, then the age distributionobtained here implies that clusters are disrupted more slowly in theLMC. The results contain no evidence for bursts in the formation ofclusters, although fluctuations on small time scales and slow variationsover the lifetime of the LMC cannot be ruled out.

The kinematics of globular clusters in the Large Magellanic Cloud
Velocities for 35 globular clusters in the LMC have been combined withdata from other sources to yield velocities for a total of 59 clustersthat range in age from 100 million to 10 billion years. Clusters youngerthan one billion years are noted to have motions similar to the gas intheir vicinity and to share the rotation solution previously found onthe basis of H I velocity maps and H II region velocities. These youngclusters therefore constitute a flattened system having a lowline-of-sight velocity dispersion, consistent with that found inprevious kinematic and photometric studies. The older clusters are alsoflattened to a disk-like system, although both the systematic velocityand position angle of the line of nodes are significantly different forthese older clusters. The data presented also suggest that, unlike theMilky Way, there is no evidence for a kinematic halo population amongglobular clusters in the LMG.

Photometric studies of composite stellar systems. V - Infrared photometry of star clusters in the Magellanic clouds
Abstract image available at:http://adsabs.harvard.edu/abs/1983ApJ...266..105P

The extended giant branches of intermediate age globular clusters in the Magellanic Clouds. III
The latest findings of a photographic near-IR survey of the red globularclusters in the Magellanic Clouds for upper asymptotic giant branchstars are reported. New IR (JHK) photometry for some 80 cluster stars isalso presented. These results combined with earlier data are used toderive age estimates for a nearly complete sample of Cloud clustershaving an integrated absolute magnitude less than -7. The agedistribution of clusters in the Large Cloud, which shows a pronouncedpeak at 4 Gyr, may be different from that in the Small Cloud. This peakcould be a result of luminosity evolution of clusters, however, and aconstant rate of cluster formation in the Large Cloud cannot be ruledout. A cluster age-metallicity relation clearly exists in the LargeCloud, althoug the degree of scatter about this relation is somewhatuncertain and may be significant.

A Catalogue of Clusters in The LMC
Not Available

Studies of the Large Magellanic Cloud. V. The Young Populous Clusters.
Abstract image available at:http://adsabs.harvard.edu/abs/1961ApJ...133..413H

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:05h13m11.65s
Apparent magnitude:99.9

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 1872

→ Request more catalogs and designations from VizieR