시작하기     To Survive in the Universe    
Inhabited Sky
    News@Sky     천체사진     컬렉션     포럼     Blog New!     질문및답변     출판     로그인  

NGC 152


내용

사진

사진 업로드

DSS Images   Other Images


관련 글

The Star-forming Region NGC 346 in the Small Magellanic Cloud with Hubble Space Telescope ACS Observations. II. Photometric Study of the Intermediate-Age Star Cluster BS 90
We present the results of our investigation of the intermediate-age starcluster BS 90, located in the vicinity of the H II region N66 in theSMC, observed with HST ACS. The high-resolution data provide a uniqueopportunity for a very detailed photometric study performed on one ofthe rare intermediate-age rich SMC clusters. The complete set ofobservations is centered on the association NGC 346 and contains almost100,000 stars down to V~=28 mag. In this study we focus on the northernpart of the region, which covers almost the whole stellar content of BS90. We construct its stellar surface density profile and derivestructural parameters. Isochrone fits on the CMD of the cluster resultsin an age of about 4.5 Gyr. The luminosity function is constructed andthe present-day mass function of BS 90 has been obtained using themass-luminosity relation, derived from the isochrone models. We found aslope between -1.30 and -0.95, comparable to or somewhat shallower thana typical Salpeter IMF. Examination of the radial dependence of the massfunction shows a steeper slope at larger radial distances, indicatingmass segregation in the cluster. The derived half-mass relaxation timeof 0.95 Gyr suggests that the cluster is mass segregated due to itsdynamical evolution. From the isochrone model fits we derive ametallicity for BS 90 of [Fe/H]=-0.72, which adds an important point tothe age-metallicity relation of the SMC. We discuss our findings on thisrelation in comparison to other SMC clusters.Research supported by the Deutsche Forschungsgemeinschaft (GermanResearch Foundation).

The TP-AGB phase. Lifetimes from C and M star counts in Magellanic Cloud clusters
Using available data for C and M giants with M_bol<-3.6 in MagellanicCloud clusters, we derive limits to the lifetimes for the correspondingevolutionary phases, as a function of stellar mass. The C-star phase isfound to have a duration between 2 and 3 Myr for stars in the mass rangefrom ~1.5 to 2.8 M_ȯ. There is also an indication that the peak ofC-star lifetime shifts to lower masses (from slightly above to slightlybelow 2 Mȯ) as we move from LMC to SMC metallicities.The M-giant lifetimes also peak at ~2 Mȯ in the LMC,with a maximum value of about 4 Myr, whereas in the SMC their lifetimesappear much shorter, but, actually, they are poorly constrained by thedata. These numbers constitute useful constraints to theoretical modelsof the TP-AGB phase. We show that several models in the literatureunderestimate the duration of the C-star phase at LMC metallicities.

A Database of 2MASS Near-Infrared Colors of Magellanic Cloud Star Clusters
The (rest-frame) near-IR domain contains important stellar populationdiagnostics and is often used to estimate masses of galaxies at low, aswell as high, redshifts. However, many stellar population models arestill relatively poorly calibrated in this part of the spectrum. Toallow an improvement of this calibration we present a new database ofintegrated near-IR JHKs magnitudes for 75 star clusters inthe Magellanic Clouds, using the Two Micron All Sky Survey (2MASS). Themajority of the clusters in our sample have robust age and metallicityestimates from color-magnitude diagrams available in the literature, andpopulate a range of ages from 10 Myr to 15 Gyr and a range in [Fe/H]from -2.17 to +0.01 dex. A comparison with matched star clusters in the2MASS Extended Source Catalog (XSC) reveals that the XSC only provides agood fit to the unresolved component of the cluster stellar population.We also compare our results with the often-cited single-channel JHKphotometry of Persson and coworkers and find significant differences,especially for their 30" diameter apertures, up to ~2.5 mag in the Kband, more than 1 mag in J-K, and up to 0.5 mag in H-K. Usingsimulations to center apertures based on maximum light throughput (asperformed by Persson et al.), we show that these differences can beattributed to near-IR-bright cluster stars (e.g., carbon stars) locatedaway from the true center of the star clusters. The wide age andmetallicity coverage of our integrated JHKs photometry sampleconstitute a fundamental data set for testing population synthesis modelpredictions and for direct comparison with near-IR observations ofdistant stellar populations.

Integrated-light VRI imaging photometry of globular clusters in the Magellanic Clouds
We present accurate integrated-light photometry in Johnson/Cousins V, Rand I for a sample of 28 globular clusters in the Magellanic Clouds. Themajority of the clusters in our sample have reliable age and metallicityestimates available in the literature. The sample encompasses agesbetween 50 Myr and 7 Gyr, and metallicities ([Fe/H]) between -1.5 and0.0 dex. The sample is dominated by clusters of ages between roughly 0.5and 2 Gyr, an age range during which the bolometric luminosity of simplestellar populations is dominated by evolved red giant branch stars andthermally pulsing asymptotic giant branch (TP-AGB) stars whosetheoretical colours are rather uncertain. The VRI colours presented inthis paper have been used to calibrate stellar population synthesismodel predictions.

Resolved Massive Star Clusters in the Milky Way and Its Satellites: Brightness Profiles and a Catalog of Fundamental Parameters
We present a database of structural and dynamical properties for 153spatially resolved star clusters in the Milky Way, the Large and SmallMagellanic Clouds, and the Fornax dwarf spheroidal. This databasecomplements and extends others in the literature, such as those ofHarris and Mackey & Gilmore. Our cluster sample comprises 50 ``youngmassive clusters'' in the LMC and SMC, and 103 old globular clustersbetween the four galaxies. The parameters we list include central andhalf-light-averaged surface brightnesses and mass densities; core andeffective radii; central potentials, concentration parameters, and tidalradii; predicted central velocity dispersions and escape velocities;total luminosities, masses, and binding energies; central phase-spacedensities; half-mass relaxation times; and ``κ-space'' parameters.We use publicly available population-synthesis models to computestellar-population properties (intrinsic B-V colors, reddenings, andV-band mass-to-light ratios) for the same 153 clusters plus another 63globulars in the Milky Way. We also take velocity-dispersionmeasurements from the literature for a subset of 57 (mostly old)clusters to derive dynamical mass-to-light ratios for them, showing thatthese compare very well to the population-synthesis predictions. Thecombined data set is intended to serve as the basis for futureinvestigations of structural correlations and the fundamental plane ofmassive star clusters, including especially comparisons between thesystemic properties of young and old clusters.The structural and dynamical parameters are derived from fitting threedifferent models-the modified isothermal sphere of King; an alternatemodified isothermal sphere based on the ad hoc stellar distributionfunction of Wilson; and asymptotic power-law models withconstant-density cores-to the surface-brightness profile of eachcluster. Surface-brightness data for the LMC, SMC, and Fornax clustersare based in large part on the work of Mackey & Gilmore, but includesignificant supplementary data culled from the literature and importantcorrections to Mackey & Gilmore's V-band magnitude scale. Theprofiles of Galactic globular clusters are taken from Trager et al. Weaddress the question of which model fits each cluster best, finding inthe majority of cases that the Wilson models-which are spatially moreextended than King models but still include a finite, ``tidal'' cutoffin density-fit clusters of any age, in any galaxy, as well as or betterthan King models. Untruncated, asymptotic power laws often fit about aswell as Wilson models but can be significantly worse. We argue that theextended halos known to characterize many Magellanic Cloud clusters maybe examples of the generic envelope structure of self-gravitating starclusters, not just transient features associated strictly with youngage.

Dust-enshrouded giants in clusters in the Magellanic Clouds
We present the results of an investigation of post-Main Sequence massloss from stars in clusters in the Magellanic Clouds, based around animaging survey in the L'-band (3.8 μm) performed with the VLT at ESO.The data are complemented with JHKs (ESO and 2MASS) andmid-IR photometry (TIMMI2 at ESO, ISOCAM on-board ISO, and data fromIRAS and MSX). The goal is to determine the influence of initialmetallicity and initial mass on the mass loss and evolution during thelatest stages of stellar evolution. Dust-enshrouded giants areidentified by their reddened near-IR colours and thermal-IR dust excessemission. Most of these objects are Asymptotic Giant Branch (AGB) carbonstars in intermediate-age clusters, with progenitor masses between 1.3and ~5 M_ȯ. Red supergiants with circumstellar dust envelopes arefound in young clusters, and have progenitor masses between 13 and 20M_ȯ. Post-AGB objects (e.g., Planetary Nebulae) and massive starswith detached envelopes and/or hot central stars are found in severalclusters. We model the spectral energy distributions of the cluster IRobjects, in order to estimate their bolometric luminosities andmass-loss rates. The IR objects are the most luminous cluster objects,and have luminosities as expected for their initial mass andmetallicity. They experience mass-loss rates in the range from a few10-6 up to 10-4 M_ȯ yr-1 (ormore), with most of the spread being due to evolutionary effects andonly a weak dependence on progenitor mass and/or initial metallicity.About half of the mass lost by 1.3-3 M_ȯ stars is shed during thesuperwind phase, which lasts of order 105 yr. Objects withdetached shells are found to have experienced the highest mass-lossrates, and are therefore interpreted as post-superwind objects. We alsopropose a simple method to measure the cluster mass from L'-band images.

Evolutionary population synthesis: models, analysis of the ingredients and application to high-z galaxies
Evolutionary population synthesis models for a wide range ofmetallicities, ages, star formation histories, initial mass functionsand horizontal branch morphologies, including blue morphologies at highmetallicity, are computed. The model output comprises spectral energydistributions, colours, stellar M/L ratios, bolometric corrections andnear-infrared (IR) spectral line indices. The energetics of the postmain sequence evolutionary phases are evaluated with the fuelconsumption theorem. The impact on the models of the stellarevolutionary tracks (in particular with and without overshooting) isassessed. We find modest differences in synthetic broad-band colours asinduced by the use of different tracks in our code [e.g. Δ(V-K) ~0.08 mag, Δ(B-V) ~ 0.03 mag]. Noticeably, these differences aresubstantially smaller than the scatter among other models in theliterature, even when the latter adopt the same evolutionary tracks. Themodels are calibrated with globular cluster data from the Milky Way forold ages, and the Magellanic clouds plus the merger remnant galaxy NGC7252, both for young ages of ~0.1-2Gyr, in a large wavelength range fromthe U band to the K band. Particular emphasis is put on the contributionfrom the thermally pulsing asymptotic giant branch (TP-AGB) phase. Weshow that this evolutionary phase is crucial for the modelling of youngstellar populations by direct comparison with observed spectral energydistributions of Magellanic cloud clusters, which are characterized byrelatively high fluxes, both blueward and redward of the V band. We findthat the combination of the near-IR spectral indices C2 andH2O can be used to determine the metallicity of ~1 Gyrstellar populations. As an illustrative application, we re-analyse thespectral energy distributions of some of the high-z galaxies (2.4<~z<~ 2.9) observed with the Spitzer Space Telescope by Yan et al.Their high rest-frame near-IR fluxes is reproduced very well with themodels including TP-AGB stars for ages in the range ~0.6-1.5Gyr,suggesting formation redshifts for these objects around z~ 3-6.

The Star Clusters of the Small Magellanic Cloud: Age Distribution
We present age measurements for 195 star clusters in the SmallMagellanic Cloud based on comparison of integrated colors measured fromthe Magellanic Clouds Photometric Survey with models of simple stellarpopulations. We find that the modeled nonuniform changes of clustercolors with age can lead to spurious age peaks in the cluster agedistribution; that the observed numbers of clusters with age t declinessmoothly as t-2.1 that for an assumed initial cluster massfunction scaling as M-2, the dependence of the clusterdisruption time on mass is proportional to M0.48; thatdespite the apparent abundance of young clusters, the dominant epoch ofcluster formation was the initial one; and that there are significantdifferences in the spatial distribution of clusters of different ages.Because of limited precision in our age measurements, we cannot addressthe question of detailed correspondence between the cluster age functionand the field star formation history. However, this sample provides aninitial guide as to which clusters to target in more detailed studies ofspecific age intervals.

ISOCAM Observations of Globular Clusters in the Magellanic Clouds: The Data
Seventeen globular clusters in the Large and Small Magellanic Cloudswere observed in the mid-infrared wavelength region with the ISOCAMinstrument on board the Infrared Space Observatory (ISO). Observationswere made using the broadband filters LW1, LW2, and LW10, correspondingto the effective wavelengths of 4.5, 6.7, and 12 μm, respectively. Wepresent the photometry of point sources in each cluster, as well astheir precise positions and finding charts.Based on observations with ISO, an ESA project with instruments fundedby ESA Member states (especially the PI countries: France, Germany, theNetherlands and the United Kingdom) and with participation of ISAS andNASA.

Infrared Surface Brightness Fluctuations of Magellanic Star Clusters
We present surface brightness fluctuations (SBFs) in the near-IR for 191Magellanic star clusters available in the Second Incremental and All SkyData releases of the Two Micron All Sky Survey (2MASS) and compare themwith SBFs of Fornax Cluster galaxies and with predictions from stellarpopulation models as well. We also construct color-magnitude diagrams(CMDs) for these clusters using the 2MASS Point Source Catalog (PSC).Our goals are twofold. The first is to provide an empirical calibrationof near-IR SBFs, given that existing stellar population synthesis modelsare particularly discrepant in the near-IR. Second, whereas mostprevious SBF studies have focused on old, metal-rich populations, thisis the first application to a system with such a wide range of ages(~106 to more than 1010 yr, i.e., 4 orders ofmagnitude), at the same time that the clusters have a very narrow rangeof metallicities (Z~0.0006-0.01, i.e., 1 order of magnitude only). Sincestellar population synthesis models predict a more complex sensitivityof SBFs to metallicity and age in the near-IR than in the optical, thisanalysis offers a unique way of disentangling the effects of age andmetallicity. We find a satisfactory agreement between models and data.We also confirm that near-IR fluctuations and fluctuation colors aremostly driven by age in the Magellanic cluster populations and that inthis respect they constitute a sequence in which the Fornax Clustergalaxies fit adequately. Fluctuations are powered by red supergiantswith high-mass precursors in young populations and by intermediate-massstars populating the asymptotic giant branch in intermediate-agepopulations. For old populations, the trend with age of both fluctuationmagnitudes and colors can be explained straightforwardly by evolution inthe structure and morphology of the red giant branch. Moreover,fluctuation colors display a tendency to redden with age that can befitted by a straight line. For the star clusters only,(H-Ks)=(0.21+/-0.03)log(age)-(1.29+/-0.22) once galaxies areincluded, (H-Ks)=(0.20+/-0.02)log(age)-(1.25+/-0.16).Finally, we use for the first time a Poissonian approach to establishthe error bars of fluctuation measurements, instead of the customaryMonte Carlo simulations.This research has made use of the NASA/ IPAC Infrared Science Archive,which is operated by the Jet Propulsion Laboratory, California Instituteof Technology, under contract with the National Aeronautics and SpaceAdministration.

The faint Cepheids of the Small Magellanic Cloud: An evolutionary selection effect?
Two problems concerning the faintest Small Magellanic Cloud (SMC)Cepheids are addressed. On the one hand evolutionary tracks fail tocross the Cepheid Instability Strip for the highest magnitudes (i.e.I-mag ~ 17) where Cepheids are observed; mass-luminosity relations(ML) obtained from evolutionary tracks disagree with mass-luminosityrelations derived from observations. We find that the above failuresconcern models built with standard input physics as well as withnon-standard ones. The present work suggests that towards highestmagnitudes, Cepheids stars undergo a selection effect caused byevolution: only the most metal poor stars cross the Instability Stripduring the ``blue loop'' phase and are therefore the only ones that canbe observed at low luminosity. This solution enables us to reproduce theshape of the lower part of the Instability Strip and improves theagreement between observed and theoretical ML-relations. Some issues arediscussed, among them Beat Cepheid results that argue strongly in favorof our hypothesis.

Surface brightness profiles and structural parameters for 10 rich stellar clusters in the Small Magellanic Cloud
As a follow-up to our recent study of a large sample of Large MagellanicCloud (LMC) clusters, we have conducted a similar study of thestructures of 10 Small Magellanic Cloud (SMC) clusters, using archivalHubble Space Telescope snapshot data. We present surface brightnessprofiles for each cluster and derive structural parameters, includingcore radii and luminosity and mass estimates, using exactly the sameprocedure as for the LMC sample. Because of the small sample size, theSMC results are not as detailed as for the larger LMC sample. We do notobserve any post-core-collapse clusters (although we did not expect to),and there is little evidence for any double clusters in our sample. Nonethe less, despite the small sample size, we show for the first time thatthe SMC clusters follow almost exactly the same trend in core radiuswith age observed for the LMC system, including the apparent bifurcationat several hundred Myr. This further strengthens our argument that thisrelationship represents true physical evolution in these clusters, withsome developing significantly expanded cores due to an as yetunidentified physical process. Additional data, both observational andfrom N-body simulations, are still required to clarify many issues.

Magellanic Clouds stellar clusters. II. New B,V CM diagrams for 6 LMC and 10 SMC clusters
We present new CCD photometry for 6 LMC and 10 SMC stellar clusterstaken at the ESO 1.54-m Danish Telescope in La Silla, to extend aprevious investigation on Magellanic Clouds clusters based on HSTsnapshots. Thanks to the much larger area covered by the Danishdetector, we investigate the spatial distribution of cluster stars,giving V, (B-V) CM diagrams for both clusters and surrounding fields.Evidence of a complex history of star formation in the Clouds isoutlined, showing that old field populations in both Clouds havemetallicities much lower than normally adopted for them (Z = 0.008 and Z= 0.004 for LMC and SMC respectively), with SMC field stars more metalpoor than in the LMC. Observational data concerning the red clump offield stars in both Clouds are briefly discussed. Based on observationscarried out at the European Southern Observatory, La Silla, Chile.

Constraining the LMC cluster age gap: Washington photometry of NGC 2155 and SL 896 (LW 480)
We carried out Washington system photometry of the intermediate-ageLarge Magellanic Cloud (LMC) star clusters NGC2155 and SL896 (LW480). Wederive ages and metallicities from the T1 versusC-T1 colour-magnitude diagrams (CMDs). For the first time anage has been obtained for SL896, 2.3+/-0.5Gyr. For NGC2155 we derive3.6+/-0.7Gyr. The two clusters basically define the lower age limit ofthe LMC age gap. In particular, NGC2155 is confirmed as the oldestintermediate-age LMC cluster so far studied. The derived metallicitiesare [Fe/H]=-0.9+/-0.2 and -0.6+/-0.2 for NGC2155 and SL896,respectively. We also studied the CMDs of the surrounding fields, whichhave a dominant turn-off comparable to that of the clusters themselves,and similar metallicity, showing that one is dealing with anintermediate-age disc where clusters and field stars have the sameorigin. We inserted the present clusters in the LMC and Small MagellanicCloud (SMC) age-metallicity relations, using a set of homogeneousdeterminations with the same method as in our previous studies, nowtotalling 15 LMC clusters and four SMC clusters, together with someadditional values from the literature. The LMC and SMC age-metallicityrelations appear to be remarkably complementary, since the SMC wasactively star-forming during the LMC quiescent age gap epoch.

The Star Cluster Systems of the Magellanic Clouds
The characteristics of the cluster systems of the Magellanic Clouds, asinferred from integrated properties, are compared with those fromindividual cluster studies and from the field population. The agreementis generally satisfactory though in the case of the LMC, the lack ofclusters older than ˜3 Gyr is not reflected in the fieldpopulation. The possible origin(s) for this cluster ``age-gap'' arediscussed. The SMC cluster age-metallicity relation is also presentedand discussed.

The Line-of-Sight Depth of Populous Clusters in the Small Magellanic Cloud
We present an analysis of age, metal abundance, and positional data onpopulous clusters in the Small Magellanic Cloud (SMC) with the ultimateaim of determining the line-of-sight (LOS) depth of the SMC by usingthese clusters as proxies. Our data set contains 12 objects and islimited to clusters with the highest-quality data for which the ages andabundances are best known and can be placed on an internally consistentscale. We have analyzed the variation of the clusters' properties withposition on the sky and with line-of-sight depth. Based on thisanalysis, we draw the following conclusions: (1) The observational dataindicate that the eastern side of the SMC (facing the Large MagellanicCloud) contains younger and more metal-rich clusters as compared withthe western side. This is not a strong correlation because our data setof clusters is necessarily limited, but it is suggestive and warrantsfurther study. (2) Depending on how the reddening is computed to ourclusters, we find a mean distance modulus that ranges from(m-M)0=18.71+/-0.06 to 18.82+/-0.05. (3) The intrinsic +/-1σ LOS depth of the SMC populous clusters in our study is between~6 and ~12 kpc, depending primarily on whether we adopt the Burstein& Heiles reddenings or those from Schlegel et al. (4) Viewing theSMC as a triaxial galaxy with declination, right ascension, and LOSdepth as the three axes, we find axial ratios of approximately 1:2:4.Taken together, these conclusions largely agree with those of previousinvestigators and underscore the utility of populous star clusters asprobes of the structure of the Small Magellanic Cloud.

Two Groups of Nearly Coeval Star Clusters in the Small Magellanic Cloud
We report new photometry and main-sequence turnoff ages for sevenpopulous star clusters in the SMC with MV<-6 and age greaterthan 1 Gyr, using the Wide Field Planetary Camera 2 on board the HubbleSpace Telescope. In contrast to the accepted picture, these clustersappear to have formed in two brief intervals, the oldest 8+/-2 Gyr agoand one during a more recent burst 2+/-0.5 Gyr ago. When the ridgelinesof the four clusters (NGC 339, 361, and 416 and Kron 3) in the 8 Gyrburst are aligned, the dispersion in turnoff luminosities is less than0.2 mag, corresponding to a maximum age spread of +/-0.7 Gyr. When theridgelines of three clusters (NGC 152, 411, and 419) in the 2 Gyr burstare aligned, the maximum dispersion of 0.2 mag in turnoff luminositycorresponds to a permitted age spread of +/-0.2 Gyr. Within each groupof clusters, the entire cluster loci (including red giant branches andclumps) are nearly identical, consistent with a very small spread inmetallicity and age. In contrast to the wide dispersion in agespreviously reported in the literature, our sample with more precisephotometry and age measurements supports a burst-punctuated rather thana continuous cluster formation history for the oldest SMC clusters.

Discovery of intrared stars in globular clusters in the Magellanic Clouds and their light variations.
Not Available

The relation between the initial and final masses of stars with different chemical compositions
We present the results of calculations for the relations between theinitial and final masses M_i-M_f of low- and moderate-mass stars forvarious initial heavy-element abundances Z. For Z = 0.02 and Z = 0.001,the resulting differences in the final masses for white dwarfs reach0.1M_solar for initial masses from 1.5 to 4M_solar. These differencesare primarily due to the dependence of the initial masses of thecarbon-oxygen cores of asymptotic giant branch stars on their chemicalcompositions. We study the roles of various assumptions about mass lossof stars in the final stages of their evolution. The population of whitedwarfs is modeled, and their mass distribution is obtained for variousassumptions about the initial chemical composition of the stars.

Ca II Triplet Spectroscopy of Giants in Small Magellanic Cloud Star Clusters: Abundances, Velocities, and the Age-Metallicity Relation
We have obtained spectra at the Ca ii triplet of individual red giantsin seven Small Magellanic Cloud (SMC) star clusters whose ages rangefrom ~4 to 12 Gyr. The spectra have been used to determine meanabundances for six of the star clusters to a typical precision of 0.12dex. When combined with existing data for other objects, the resultingSMC age-metallicity relation is generally consistent with that for asimple model of chemical evolution, scaled to the present-day SMC meanabundance and gas mass fraction. Two of the clusters (Lindsay 113 andNGC 339), however, have abundances that are ~0.5 dex lower than thatexpected from the mean age-metallicity relation. It is suggested thatthe formation of these clusters, which have ages of ~5 Gyr, may haveinvolved the infall of unenriched gas, perhaps from the MagellanicStream. The spectra also yield radial velocities for the seven clusters.The resulting velocity dispersion is 16 +/- 4 km s^-1, consistent withthose of the SMC planetary nebula and carbon star populations.

Duration of the superwind phase of asymptotic giant branch stars
Near the ends of their lives, low- and intermediate-mass stars gothrough a phase of evolution known as the asymptotic giantbranch1,2. This luminous red-giant phase is thought to beterminated by a period of intense mass loss in the form of asuperwind3, which leads to the formation of a planetarynebula. Although the effects of mass loss have been studied extensivelyin many stars, the duration of this phase is not well constrained,because of uncertainties in the distances, masses, ages, and absoluteluminosities of the observed stars. On the other hand, the properties ofstars in the globular clusters associated with the Magellanic Clouds arenot subject to these uncertainties, and so provide an excellentopportunity for studying mass-loss phenomena in a quantitative way. Herewe report the discovery of two infrared stars in Magellanic Cloudglobular clusters that are undergoing a period of intense mass loss.Those observations, together with those of a previously discoveredinfrared star, confirm that asymptotic giant branch stars go through asuperwind phase, and constrain the duration of this phase to be about100,000 years.

A radio continuum study of the Magellanic Clouds V. Catalogues of radio sources in the Small Magellanic Cloud at 1.42, 2.45, 4.75, 4.85 and 8.55 GHz
We present catalogues of radio sources in the Small Magellanic Cloudfrom observations with the Parkes radio telescope at 1.42, 2.45, 4.75and 8.55 GHz, and an additional catalogue from the Parkes-MIT-NRAOsurvey at 4.85 GHz. A total of 224 sources were detected at at least oneof these frequencies, 60 of which are reported here for the first timeas radio sources. We compare positions and flux densities of thesesources with previously published results and find no significantpositional displacement or flux discrepancies. Tables 2-7 are onlyavailable electronically at the CDS via ftp 130.79.128.5 or athttp://cdsweb.u-strasbg.fr/Abstract.html

Extreme Infrared Stars Discovered in Magellanic Cloud Globular Clusters
We report preliminary results of our systematic survey for infraredstars in the globular clusters of the Magellanic Clouds. In the courseof an ISOCAM survey for AGB stars in the intermediate-age clusters, wehave discovered extremely red AGB stars in NGC 419 and NGC 1978. Fromtheir colours and luminosities, they are thought to be experiencingintense mass-loss and to be in the final or superwind phase of the AGBevolution. However, they seem to be of somewhat lower luminosity thanthe corresponding visible AGB stars when only the mid-infrared data aretaken into account. This suggests that hitherto unobserved infraredexcesses may exist at longer wavelengths.

A Revised and Extended Catalog of Magellanic System Clusters, Associations, and Emission Nebulae. I. Small Magellanic Cloud and Bridge
A survey of extended objects in the Magellanic System was carried out onthe ESO/SERC R and J Sky Survey Atlases. The present work is dedicatedto the Small Magellanic Cloud and to the inter-Magellanic Cloud region("Bridge") totaling 1188 objects, of which 554 are classified as starclusters, 343 are emissionless associations, and 291 are related toemission nebulae. The survey includes cross-identifications amongcatalogs, and we present 284 new objects. We provide accurate positions,classification, homogeneous sizes, and position angles, as well asinformation on cluster pairs and hierarchical relation for superimposedobjects. Two clumps of extended objects in the Bridge and one at theSmall Magellanic Cloud wing tip might be currently forming dwarfspheroidal galaxies.

Ultraviolet spectral evolution of star clusters in the IUE library.
The ultraviolet integrated spectra of star clusters and H II regions inthe IUE library have been classified into groups based on their spectralappearance, as well as on age and metallicity information from otherstudies. We have coadded the spectra in these groups according to theirS/N ratio, creating a library of template spectra for futureapplications in population syntheses in galaxies. We define spectralwindows for equivalent width measurements and for continuum tracings.These measurements in the spectra of the templates are studied as afunction of age and metallicity. We indicate the windows with a strongmetallicity dependence, at different age stages.

CCD Observations of Young and Intermediate Age Clusters
Not Available

Photoelectric UBVRI Sequences in the Magellanic Cloud Clusters NGC 152, NGC 1978, and NGC 2121
We present UBVRI photoelectric sequences for the Small Magellanic Cloudblue cluster NGC 152 and the Large Magellanic Cloud red clusters NGC1978 and NGC 2121. All of them fall in fields suitable for CCD coverage.The number of stars and the range of magnitude and colors are: NGC 152,eight stars with 12.7 < V < 16.1; 0.6 < B-V < 1.6; NGC 1978,ten stars with 13.1 < V < 15.3; -0.2< B-V < 1.7; NGC 2121,nine stars with 12.7 < V < 15.5; 0.5 < B-V < 1.2. The starswere measured an average of five times on at least three differentnights. Six stars are in common with previous works in NGC 152, and twoeach in NGC 1978 and NGC 2121.

Stellar populations and the large-scale structure of the Small Magellanic Cloud. IV - Age distribution studies of the outer regions
Within the framework of an investigation of the large-scale structureand stellar content of the SMC on the basis of photometric analysis ofsets of blue and red UK Schmidt Telescope (UKST) photographic plates, astudy is presented of the age and spatial distribution of stellarpopulations in an area covering six UKST survey fields, i.e., virtuallythe entire outer area of the SMC. The existence of a very old stellarpopulation of age 15-16 Gyr, comprising about 7 percent of the stellarcontent of the outer regions by mass, is suggested by the observationalresults. The bulk of the stellar population in the outer regions of theSMC is found to be about 10 Gyr old. The distribution of stellarpopulations younger than about 2 Gyr is shown to be biased towards theeastern side of the SMC facing the LMC. The star-formation history ofthe outer regions is discussed with particular reference to the role ofinteractions between the MC-SMC-Galaxy system.

The evolution of carbon stars in the Magellanic Clouds
This study presents JHK photometric data for over 100 field stars in theSMC and for 10 in the Large Cloud together with spectroscopic resultsfor about half of them. In the Small Cloud carbon stars were found athigher temperatures and lower luminosities than previously observed. Thefaintest are below the top of the red giant branch. The medium- andlow-luminosity C stars in the M-C transition zone have a low C2 content.At these luminosities, most of the J-type stars are found close to theC2-poor stars in the HR diagram. Their C2 content is about as high as inthe coolest, most evolved C stars. The present observations of carbonstars in the SMC show that they cover a range in M(bo) from -3 to 5.9mag. The transitions from M to C via S appear to occur in both Clouds ata rather well-defined range in M(bol) for SWB and classes IV and V.

Accurate positions for SMC clusters
Positions of 203 SMC clusters accurate to + or - 5 arcsec are reported.The astrometry method used is briefly described. Plans for futureMagellanic Cloud cluster astrometry are summarized.

새 글 등록


관련 링크

  • - 링크가 없습니다. -
새 링크 등록


다음 그룹에 속해있음:


관측 및 측정 데이터

별자리:큰부리새자리
적경:00h32m56.26s
적위:-73°06'56.6"
가시등급:12

천체목록:
일반명   (Edit)
NGC 2000.0NGC 152

→ VizieR에서 더 많은 목록을 가져옵니다.