시작하기     To Survive in the Universe    
Inhabited Sky
    News@Sky     천체사진     컬렉션     포럼     Blog New!     질문및답변     출판     로그인  

NGC 4833


내용

사진

사진 업로드

DSS Images   Other Images


관련 글

Star Counts in the Globular Cluster ω Centauri. I. Bright Stellar Components
We present a photometric investigation on HB, RGB, and MSTO stars inω Cen=NGC 5139. The center of the cluster was covered with amosaic of F435W, F625W, and F658N band data collected with HST ACS. Theouter reaches were covered with a mosaic of U-, B-, V-, and I-band datacollected with the 2.2 m ESO/MPI telescope. The final catalog includes~1.7 million stars. We identified more than 3200 likely HB stars, thelargest sample ever collected in a globular cluster. We found that theHB morphology changes with the radial distance from the cluster center.The relative number of extreme HB stars decreases from ~30% to ~21% whenmoving from the center toward the outer reaches of the cluster, whilethe fraction of less hot HB stars increases from ~62% to ~72%. Thecomparison between theory and observations indicates that the empiricalstar counts of HB stars are on average larger (30%-40%) than predictedby canonical evolutionary models. Moreover, the rate of HB stars is ~43%larger than the MSTO rate. We also compared theory and observations byassuming a mix of stellar populations made with 70% of canonical He(Y=0.23) stars and 30% of He-enhanced (Y=0.33, 0.42) stars. We foundthat the observed RG/MSTO ratio agrees with the predicted lifetimes ofHe-mixed stellar populations. The discrepancy between theory andobservations decreases by a factor of 2 when compared with ratespredicted by canonical He content models, but still 15%-25% (Y=0.42) and15%-20% (Y=0.33) higher than observed. Furthermore, the ratios betweenHB and MSTO star counts are ~24% (Y=0.42) and 30% (Y=0.33) larger thanpredicted lifetime ratios.During the revision of this manuscript, Vittorio Castellani passed awayon 2006 May 19. His suggestions, ideas, and personality will be greatlymissed.Based on data obtained from the ESO Science Archive Facility and theHubble Space Telescope Archive Facility.

Space Velocities of Southern Globular Clusters. V. A Low Galactic Latitude Sample
We have measured the absolute proper motions of globular clusters NGC2808, 3201, 4372, 4833, 5927, and 5986. The proper motions are on theHipparcos system, and they are the first determinations ever made forthese low Galactic latitude clusters. The proper-motion uncertaintiesrange from 0.3 to 0.5 mas yr-1. The inferred orbits indicatethat (1) the single metal-rich cluster in our sample, NGC 5927,dynamically belongs to the thick disk; (2) the remaining metal-poorclusters have rather low-energy orbits of high eccentricity, and amongthese there appear to be two ``pairs'' of dynamically associatedclusters; (3) the most energetic cluster in our sample, NGC 3201, is ona highly retrograde orbit-which had already been surmised from radialvelocity alone-with an apocentric distance of 22 kpc; and (4) none ofthe metal-poor clusters appear to be associated with the recentlydetected SDSS streams or with the Monoceros structure. These are thefirst results of the Southern Proper Motion program where thesecond-epoch observations are taken with the recent CCD camera systeminstalled on the double astrograph at El Leoncito, Argentina.

Kinematic Decoupling of Globular Clusters with the Extended Horizontal Branch
About 25% of the Milky Way globular clusters (GCs) exhibit unusuallyextended color distribution of stars in the core helium-burninghorizontal-branch (HB) phase. This phenomenon is now best understood asdue to the presence of helium-enhanced second-generation subpopulations,which has raised the possibility that these peculiar GCs might have aunique origin. Here we show that these GCs with extended HB are clearlydistinct from other normal GCs in kinematics and mass. The GCs withextended HB are more massive than normal GCs and are dominated by randommotion with no correlation between kinematics and metallicity.Surprisingly, however, when they are excluded, most normal GCs in theinner halo show clear signs of dissipational collapse that apparentlyled to the formation of the disk. Normal GCs in the outer halo sharetheir kinematic properties with the extended HB GCs, which is consistentwith the accretion origin. Our result further suggests heterogeneousorigins of GCs, and we anticipate this to be a starting point for moredetailed investigations of Milky Way formation, including early mergers,collapse, and later accretion.

Where the Blue Stragglers Roam: Searching for a Link between Formation and Environment
The formation of blue stragglers is still not completely understood,particularly the relationship between formation environment andmechanism. We use a large, homogeneous sample of blue stragglers in thecores of 57 globular clusters to investigate the relationships betweenblue straggler populations and their environments. We use a consistentdefinition of ``blue straggler'' based on position in thecolor-magnitude diagram and normalize the population relative to thenumber of red giant branch stars in the core. We find that thepreviously determined anticorrelation between blue straggler frequencyand total cluster mass is present in the purely core population. We findsome weak anticorrelations with central velocity dispersion and withhalf-mass relaxation time. The blue straggler frequency does not showany trend with any other cluster parameter. Even though collisions maybe expected to be a dominant blue straggler formation process inglobular cluster cores, we find no correlation between the frequency ofblue stragglers and the collision rate in the core. We also investigatedthe blue straggler luminosity function shape and found no relationshipbetween any cluster parameter and the distribution of blue stragglers inthe color-magnitude diagram. Our results are inconsistent with somerecent models of blue straggler formation that include collisionalformation mechanisms and may suggest that almost all observed bluestragglers are formed in binary systems.

Integrated-Light Two Micron All Sky Survey Infrared Photometry of Galactic Globular Clusters
We have mosaicked Two Micron All Sky Survey (2MASS) images to derivesurface brightness profiles in J, H, and Ks for 104 Galacticglobular clusters. We fit these with King profiles and show that thecore radii are identical to within the errors for each of these IRcolors and are identical to the core radii at V in essentially allcases. We derive integrated-light colors V-J, V-H, V-Ks, J-H,and J-Ks for these globular clusters. Each color shows areasonably tight relation between the dereddened colors and metallicity.Fits to these are given for each color. The IR - IR colors have verysmall errors, due largely to the all-sky photometric calibration of the2MASS survey, while the V-IR colors have substantially largeruncertainties. We find fairly good agreement with measurements ofintegrated-light colors for a smaller sample of Galactic globularclusters by M. Aaronson, M. Malkan, and D. Kleinmann from 1977. Ourresults provide a calibration for the integrated light of distantsingle-burst old stellar populations from very low to solarmetallicities. A comparison of our dereddened measured colors withpredictions from several models of the integrated light of single-burstold populations shows good agreement in the low-metallicity domain forV-Ks colors but also shows an offset at a fixed [Fe/H] of~0.1 mag in J-Ks, which we ascribe to photometric systemtransformation issues. Some of the models fail to reproduce the behaviorof the integrated-light colors of the Galactic globular clusters nearsolar metallicity.

Global fitting of globular cluster age indicators
Context: .Stellar models and the methods for the age determinations ofglobular clusters are still in need of improvement. Aims: .Weattempt to obtain a more objective method of age determination based oncluster diagrams, avoiding the introduction of biases due to thepreference of one single age indicator. Methods: .We compute newstellar evolutionary tracks and derive the dependence of age indicatingpoints along the tracks and isochrone - such as the turn-off or bumplocation - as a function of age and metallicity. The same criticalpoints are identified in the colour-magnitude diagrams of globularclusters from a homogeneous database. Several age indicators are thenfitted simultaneously, and the overall best-fitting isochrone isselected to determine the cluster age. We also determine thegoodness-of-fit for different sets of indicators to estimate theconfidence level of our results. Results: .We find that ourisochrones provide no acceptable fit for all age indicators. Inparticular, the location of the bump and the brightness of the tip ofthe red giant branch are problematic. On the other hand, the turn-offregion is very well reproduced, and restricting the method to indicatorsdepending on it results in trustworthy ages. Using an alternative set ofisochrones improves the situation, but neither leads to an acceptableglobal fit. Conclusions: .We conclude that evolutionary tracks oflow-mass metal-poor stars are far from reproducing all aspects ofglobular cluster colour-magnitude diagrams and that the determination ofcluster ages still depends on the favourite method or indicator chosen.

Multivariate analysis of globular cluster horizontal branch morphology: searching for the second parameter
Aims.The interpretation of globular cluster horizontal branch (HB)morphology is a classical problem that can significantly blur ourunderstanding of stellar populations. Methods: .We present a newmultivariate analysis connecting the effective temperature extent of theHB with other cluster parameters. The work is based on Hubble SpaceTelescope photometry of 54 Galactic globular clusters. Results: .The present study reveals the important role of the total mass of theglobular cluster on its HB morphology. More massive clusters tend tohave HBs more extended to higher temperatures. For a set of three inputvariables including the temperature extension of the HB, [Fe/H] and M_V,the first two eigenvectors account for 90% of the total samplevariance. Conclusions: . Possible effects of clusterself-pollution on HB morphology, stronger in more massive clusters,could explain the results derived here.

Globular cluster system and Milky Way properties revisited
Aims.Updated data of the 153 Galactic globular clusters are used toreaddress fundamental parameters of the Milky Way, such as the distanceof the Sun to the Galactic centre, the bulge and halo structuralparameters, and cluster destruction rates. Methods: .We build areduced sample that has been decontaminated of all the clusters youngerthan 10 Gyr and of those with retrograde orbits and/or evidence ofrelation to dwarf galaxies. The reduced sample contains 116 globularclusters that are tested for whether they were formed in the primordialcollapse. Results: .The 33 metal-rich globular clusters([Fe/H]≥-0.75) of the reduced sample basically extend to the Solarcircle and are distributed over a region with the projected axial-ratiostypical of an oblate spheroidal, Δ x:Δ y:Δz≈1.0:0.9:0.4. Those outside this region appear to be related toaccretion. The 81 metal-poor globular clusters span a nearly sphericalregion of axial-ratios ≈1.0:1.0:0.8 extending from the central partsto the outer halo, although several clusters in the external regionstill require detailed studies to unravel their origin as accretion orcollapse. A new estimate of the Sun's distance to the Galactic centre,based on the symmetries of the spatial distribution of 116 globularclusters, is provided with a considerably smaller uncertainty than inprevious determinations using globular clusters, R_O=7.2±0.3 kpc.The metal-rich and metal-poor radial-density distributions flatten forR_GC≤2 kpc and are represented well over the full Galactocentricdistance range both by a power-law with a core-like term andSérsic's law; at large distances they fall off as ˜R-3.9. Conclusions: .Both metallicity components appearto have a common origin that is different from that of the dark matterhalo. Structural similarities between the metal-rich and metal-poorradial distributions and the stellar halo are consistent with a scenariowhere part of the reduced sample was formed in the primordial collapseand part was accreted in an early period of merging. This applies to thebulge as well, suggesting an early merger affecting the central parts ofthe Galaxy. The present decontamination procedure is not sensitive toall accretions (especially prograde) during the first Gyr, since theobserved radial density profiles still preserve traces of the earliestmerger(s). We estimate that the present globular cluster populationcorresponds to ≤23±6% of the original one. The fact that thevolume-density radial distributions of the metal-rich and metal-poorglobular clusters of the reduced sample follow both a core-likepower-law, and Sérsic's law indicates that we are dealing withspheroidal subsystems at all scales.

Nearby Spiral Globular Cluster Systems. I. Luminosity Functions
We compare the near-infrared (JHK) globular cluster luminosity functions(GCLFs) of the Milky Way, M31, and the Sculptor Group spiral galaxies.We obtained near-infrared photometry with the Persson's AuxiliaryNasmyth Infrared Camera on the Baade Telescope for 38 objects (mostlyglobular cluster candidates) in the Sculptor Group. We also havenear-infrared photometry from the Two Micron All Sky Survey (2MASS)-6Xdatabase for 360 M31 globular cluster candidates and aperture photometryfor 96 Milky Way globular cluster candidates from the 2MASS All-Sky andSecond Incremental Release databases. The M31 6X GCLFs peak at absolutereddening-corrected magnitudes of MJ0=-9.18,MH0=-9.73, and MK0=-9.98.The mean brightness of the Milky Way objects is consistent with that ofM31 after accounting for incompleteness. The average Sculptor absolutemagnitudes (correcting for relative distance from the literature andforeground reddening) are MJ0=-9.18,MH0=-9.70, and MK0=-9.80.NGC 300 alone has absolute foreground-dereddened magnitudesMJ0=-8.87, MH0=-9.39, andMK0=-9.46 using the newest Gieren et al. distance.This implies either that the NGC 300 GCLF may be intrinsically fainterthan that of the larger galaxy M31 or that NGC 300 may be slightlyfarther away than previously thought. Straightforward application of ourM31 GCLF results as a calibrator gives NGC 300 distance moduli of26.68+/-0.14 using J, 26.71+/-0.14 using H, and 26.89+/-0.14 using K.Data for this project were obtained at the Baade 6.5 m telescope, LasCampanas Observatory, Chile.

RR Lyrae-based calibration of the Globular Cluster Luminosity Function
We test whether the peak absolute magnitude MV(TO) of theGlobular Cluster Luminosity Function (GCLF) can be used for reliableextragalactic distance determination. Starting with the luminosityfunction of the Galactic Globular Clusters listed in Harris catalogue,we determine MV(TO) either using current calibrations of theabsolute magnitude MV(RR) of RR Lyrae stars as a function ofthe cluster metal content [Fe/H] and adopting selected cluster samples.We show that the peak magnitude is slightly affected by the adoptedMV(RR)-[Fe/H] relation, with the exception of that based onthe revised Baade-Wesselink method, while it depends on the criteria toselect the cluster sample. Moreover, grouping the Galactic GlobularClusters by metallicity, we find that the metal-poor (MP) ([Fe/H]<-1.0, <[Fe/H]>~-1.6) sample shows peak magnitudes systematicallybrighter by about 0.36mag than those of the metal-rich (MR) ([Fe/H]>-1.0, (<[Fe/H]>~-0.6) one, in substantial agreement with thetheoretical metallicity effect suggested by synthetic Globular Clusterpopulations with constant age and mass function. Moving outside theMilky Way, we show that the peak magnitude of the MP clusters in M31appears to be consistent with that of Galactic clusters with similarmetallicity, once the same MV(RR)-[Fe/H] relation is used fordistance determination. As for the GCLFs in other external galaxies,using Surface Brightness Fluctuations (SBF) measurements we giveevidence that the luminosity functions of the blue (MP) GlobularClusters peak at the same luminosity within ~0.2mag, whereas for the red(MR) samples the agreement is within ~0.5mag even accounting for thetheoretical metallicity correction expected for clusters with similarages and mass distributions. Then, using the SBF absolute magnitudesprovided by a Cepheid distance scale calibrated on a fiducial distanceto Large Magellanic Cloud (LMC), we show that the MV(TO)value of the MP clusters in external galaxies is in excellent agreementwith the value of both Galactic and M31 ones, as inferred by an RR Lyraedistance scale referenced to the same LMC fiducial distance. Eventually,adopting μ0(LMC) = 18.50mag, we derive that the luminosityfunction of MP clusters in the Milky Way, M31, and external galaxiespeak at MV(TO) =-7.66 +/- 0.11, - 7.65 +/- 0.19 and -7.67 +/-0.23mag, respectively. This would suggest a value of -7.66 +/- 0.09mag(weighted mean), with any modification of the LMC distance modulusproducing a similar variation of the GCLF peak luminosity.

Musca - the heavenly fly.
Not Available

Resolved Massive Star Clusters in the Milky Way and Its Satellites: Brightness Profiles and a Catalog of Fundamental Parameters
We present a database of structural and dynamical properties for 153spatially resolved star clusters in the Milky Way, the Large and SmallMagellanic Clouds, and the Fornax dwarf spheroidal. This databasecomplements and extends others in the literature, such as those ofHarris and Mackey & Gilmore. Our cluster sample comprises 50 ``youngmassive clusters'' in the LMC and SMC, and 103 old globular clustersbetween the four galaxies. The parameters we list include central andhalf-light-averaged surface brightnesses and mass densities; core andeffective radii; central potentials, concentration parameters, and tidalradii; predicted central velocity dispersions and escape velocities;total luminosities, masses, and binding energies; central phase-spacedensities; half-mass relaxation times; and ``κ-space'' parameters.We use publicly available population-synthesis models to computestellar-population properties (intrinsic B-V colors, reddenings, andV-band mass-to-light ratios) for the same 153 clusters plus another 63globulars in the Milky Way. We also take velocity-dispersionmeasurements from the literature for a subset of 57 (mostly old)clusters to derive dynamical mass-to-light ratios for them, showing thatthese compare very well to the population-synthesis predictions. Thecombined data set is intended to serve as the basis for futureinvestigations of structural correlations and the fundamental plane ofmassive star clusters, including especially comparisons between thesystemic properties of young and old clusters.The structural and dynamical parameters are derived from fitting threedifferent models-the modified isothermal sphere of King; an alternatemodified isothermal sphere based on the ad hoc stellar distributionfunction of Wilson; and asymptotic power-law models withconstant-density cores-to the surface-brightness profile of eachcluster. Surface-brightness data for the LMC, SMC, and Fornax clustersare based in large part on the work of Mackey & Gilmore, but includesignificant supplementary data culled from the literature and importantcorrections to Mackey & Gilmore's V-band magnitude scale. Theprofiles of Galactic globular clusters are taken from Trager et al. Weaddress the question of which model fits each cluster best, finding inthe majority of cases that the Wilson models-which are spatially moreextended than King models but still include a finite, ``tidal'' cutoffin density-fit clusters of any age, in any galaxy, as well as or betterthan King models. Untruncated, asymptotic power laws often fit about aswell as Wilson models but can be significantly worse. We argue that theextended halos known to characterize many Magellanic Cloud clusters maybe examples of the generic envelope structure of self-gravitating starclusters, not just transient features associated strictly with youngage.

A Comparison of Elemental Abundance Ratios in Globular Clusters, Field Stars, and Dwarf Spheroidal Galaxies
We have compiled a sample of globular clusters with high-quality stellarabundances from the literature to compare to the chemistries of stars inthe Galaxy and in dwarf spheroidal galaxies. Of the 45 globular clustersexamined, 29 also have kinematic information. Most of the globularclusters belong to the Galactic halo; however, a significant number havedisk kinematics or belong to the bulge. Focusing on the [α/Fe] andlight r-process element ratios, we find that most globular cluster starsmimic field stars of similar metallicities, and neither clearlyresembles the currently available stellar abundances in dwarf galaxies(including globular clusters in the Large Magellanic Cloud). Theexceptions to these general elemental ratio comparisons are alreadyknown in the literature, e.g., ω Centauri, Palomar 12, and Terzan7 associated with the Sagittarius remnant and Ruprecht 106, which has ahigh radial velocity and low [α/Fe] ratio. A few other globularclusters show more marginal peculiarities. The most notable one is thehalo cluster M68, which has a high galactocentric rotational velocity, aslightly younger age, and a unique [Si/Ti] ratio. The [Si/Ti] ratiosdecrease with increasing [Fe/H] at intermediate metallicities, which isconsistent with very massive stars playing a larger role in the earlychemical evolution of the Galaxy. The chemical similarities betweenglobular clusters and field stars with [Fe/H]<=-1.0 suggests a sharedchemical history in a well-mixed early Galaxy. The differences in thepublished chemistries of stars in the dwarf spheroidal galaxies suggestthat neither the globular clusters, halo stars, nor thick disk stars hadtheir origins in small isolated systems like the present-day Milky Waydwarf satellites.

Galactic Globular Cluster Relative Ages
We present accurate relative ages for a sample of 55 Galactic globularclusters. The ages have been obtained by measuring the differencebetween the horizontal branch and the turnoff in two internallyphotometrically homogeneous databases. The mutual consistency of the twodata sets has been assessed by comparing the ages of 16 globularclusters in common between the two databases. We have also investigatedthe consistency of our relative age determination within the recentstellar model framework. All clusters with [Fe/H]<-1.7 are found tobe old and coeval, with the possible exception of two objects, which aremarginally younger. The age dispersion for the metal-poor clusters is0.6 Gyr (rms), consistent with a null age dispersion.Intermediate-metallicity clusters (-1.7<[Fe/H]<-0.8) are onaverage 1.5 Gyr younger than the metal-poor ones, with an age dispersionof 1.0 Gyr (rms) and a total age range of ~3 Gyr. About 15% of theintermediate-metallicity clusters are coeval with the oldest clusters.All the clusters with [Fe/H]>-0.8 are ~1 Gyr younger than the mostmetal-poor ones, with a relatively small age dispersion, although themetal-rich sample is still too small to allow firmer conclusions. Thereis no correlation of the cluster age with the galactocentric distance.We briefly discuss the implication of these observational results forthe formation history of the Galaxy.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555, and on observations made at the European SouthernObservatory, La Silla, Chile, and with the Isaac Newton GroupTelescopes.

On the origin of the radial mass density profile of the Galactic halo globular cluster system
We investigate what may be the origin of the presently observed spatialdistribution of the mass of the Galactic Old Halo globular clustersystem. We propose its radial mass density profile to be a relic of thedistribution of the cold baryonic material in the protogalaxy. Assumingthat this one arises from the profile of the whole protogalaxy minus thecontribution of the dark matter (and a small contribution of the hot gasby which the protoglobular clouds were bound), we show that the massdistributions around the Galactic centre of this cold gas and of the OldHalo agree satisfactorily. In order to demonstrate our hypothesis evenmore conclusively, we simulate the evolution with time, up to an age of15Gyr, of a putative globular cluster system whose initial massdistribution in the Galactic halo follows the profile of the coldprotogalactic gas. We show that beyond a galactocentric distance oforder 2-3kpc, the initial shape of such a mass density profile ispreserved despite the complete destruction of some globular clusters andthe partial evaporation of some others. This result is almostindependent of the choice of the initial mass function for the globularclusters, which is still ill determined. The shape of these evolvedcluster system mass density profiles also agrees with the presentlyobserved profile of the Old Halo globular cluster system, thusstrengthening our hypothesis. Our result might suggest that theflattening shown by the Old Halo mass density profile at short distancesfrom the Galactic centre is, at least partly, of primordial origin.

Age and Metallicity Estimation of Globular Clusters from Strömgren Photometry
We present a new technique for the determination of age and metallicityin composite stellar populations using Strömgren filters. Usingprincipal component (PC) analysis on multicolor models, we isolate therange of values necessary to uniquely determine age and metallicityeffects. The technique presented here can only be applied to old(τ>3 Gyr) stellar systems composed of simple stellar populations,such as globular clusters and elliptical galaxies. Calibration using newphotometry of 40 globular clusters with spectroscopic [Fe/H] values andmain-sequence-fitted ages links the PC values to the Strömgrencolors, for an accuracy of 0.2 dex in metallicity and 0.5 Gyr in age.

Ages and metallicities of star clusters: New calibrations and diagnostic diagrams from visible integrated spectra
We present homogeneous scales of ages and metallicities for starclusters from very young objects, through intermediate-age ones up tothe oldest known clusters. All the selected clusters have integratedspectra in the visible range, as well as reliable determinations oftheir ages and metallicities. From these spectra equivalent widths (EWs)of K Ca II, G band (CH) and Mg I metallic, and Hδ, Hγ andHβ Balmer lines have been measured homogeneously. The analysis ofthese EWs shows that the EW sums of the metallic and Balmer H lines,separately, are good indicators of cluster age for objects younger than10 Gyr, and that the former is also sensitive to cluster metallicity forages greater than 10 Gyr. We propose an iterative procedure forestimating cluster ages by employing two new diagnostic diagrams and agecalibrations based on the above EW sums. For clusters older than 10 Gyr,we also provide a calibration to derive their overall metal contents.

Abundance Variations Within Globular Clusters
Abundance variations within globular clusters (GCs), and of GC starswith respect to field stars, are important diagnostics of a variety ofphysical phenomena, related to the evolution of individual stars, masstransfer in binary systems, and chemical evolution in high densityenvironments. The broad astrophysical implications of GCs as buildingblocks of our knowledge of the Universe make a full understanding oftheir history and evolution basic in a variety of astrophysical fields.We review the current status of the research in this field, comparingthe abundances in GCs with those obtained for field stars, discussing indepth the evidence for H-burning at high temperatures in GC stars,describing the process of self-enrichment in GCs with particularreference to the case of the most massive Galactic GC ( Cen), anddiscussing various classes of cluster stars with abundance anomalies.Whereas the overall pattern might appear very complex at first sight,exciting new scenarios are opening where the interplay between GCdynamical and chemical properties are closely linked with each other.

Measuring the Slope of the Dust Extinction Law and the Power Spectrum of Dust Clouds Using Differentially Reddened Globular Clusters
We present three methods for measuring the slope of the Galactic dustextinction law, RV, and a method for measuring the fine-scalestructure of dust clouds in the direction of differentially reddenedglobular clusters. We apply these techniques to BVI photometry of starsin the low-latitude Galactic globular cluster NGC 4833, which displaysspatially variable extinction/reddening about a mean~1. An extensive suite of Monte Carlo simulationsis used to characterize the efficacy of the methods. The essence of thefirst two methods is to determine, for an assumed value ofRV, the relative visual extinction δAV ofeach cluster horizontal-branch (HB) star with respect to an empirical HBlocus; the locus is derived from the color-magnitude diagram (CMD) of asubset of stars in a small region near the cluster center for whichdifferential extinction/reddening are relatively small. A star-by-starcomparison of δAV from the (B-V, V) CMD with that fromthe (V-I, V) CMD is used to find the optimal RV. In the thirdmethod RV is determined by minimizing the scatter in the HBin the (B-V, V) CMD after correcting the photometry for extinction andreddening using the dust maps of Schlegel, Finkbeiner, & Davis. Theweighted average of the results from the three methods givesRV=3.0+/-0.4 for the dust along the line of sight to NGC4833. The fine-scale structure of the dust is quantified via thedifference,(ΔAV)ij≡(δAV)i-(δAV)j,between pairs of cluster HB stars (i, j) as a function of their angularseparation rij. The variance (mean square scatter) of(ΔAV)ij is found to have a power-lawdependence on angular scale: var(r)~rβ, withβ=+0.9+/-0.1. This translates into an angular power spectrumP(κ)~κα, with the index α=-1.9+/-0.1for r~1'-5', where κ≡1/r. The dustangular power spectrum on small scales (from optical data) matchessmoothly onto the larger scale power spectrum derived from Schlegel etal.'s far-infrared map of the dust thermal emission.

The initial helium abundance of the Galactic globular cluster system
In this paper we estimate the initial He content in about 30% of theGalactic globular clusters (GGCs) from new star counts we have performedon the recently published HST snapshot database of Colour MagnitudeDiagrams (Piotto et al. \cite{Piotto02}). More specifically, we use theso-called R-parameter and estimate the He content from a theoreticalcalibration based on a recently updated set of stellar evolution models.We performed an accurate statistical analysis in order to assess whetherGGCs show a statistically significant spread in their initial Heabundances, and whether there is a correlation with the clustermetallicity. As in previous works on the subject, we do not find anysignificant dependence of the He abundance on the cluster metallicity;this provides an important constraint for models of Galaxy formation andevolution. Apart from GGCs with the bluest Horizontal Branch morphology,the observed spread in the individual helium abundances is statisticallycompatible with the individual errors. This means that either there isno intrinsic abundance spread among the GGCs, or that this is masked bythe errors. In the latter case we have estimated a firm 1σ upperlimit of 0.019 to the possible intrinsic spread. In case of the GGCswith the bluest Horizontal Branch morphology we detect a significantspread towards higher abundances inconsistent with the individualerrors; this can be fully explained by additional effects not accountedfor in our theoretical calibrations, which do not affect the abundancesestimated for the clusters with redder Horizontal Branch morphology. Inthe hypothesis that the intrinsic dispersion on the individual Heabundances is zero, taking into account the errors on the individualR-parameter estimates, as well as the uncertainties on the clustermetallicity scale and theoretical calibration, we have determined aninitial He abundance mass fraction YGGC=0.250±0.006.This value is in perfect agreement with current estimates based onCosmic Microwave Background radiation analyses and cosmologicalnucleosynthesis computations.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by AURA,Inc., under NASA contract NAS5-26555, and on observations retrieved withthe ESO ST-ECF Archive.

BVRI photometry of the galactic globular cluster NGC 6779
We present B, V, R and I photometry for NGC 6779 (M56), a metal-poorglobular cluster in the galactic halo. The observations were performedusing the 1.3-m telescope at Skinakas Observatory, in Crete. Thereddening of the cluster was found to be E(B-V) = 0.32 +/- 0.02 [E(V-I)= 0.43 +/- 0.02], significantly higher than previous estimates. Themetal abundance of the cluster was derived from various parametrizationsof red giant branch characteristics and it was found to be[Fe/H]ZW=-2.20 +/- 0.12 dex on the Zinn-West metallicityscale, or [Fe/H]CG=-2.00 +/- 0.21 dex on the Carretta-Grattonscale. The distance modulus of the cluster is estimated to be(m-M)V= 15.62 +/- 0.26 (or 14.62, if we correct for thereddening to the cluster). The horizontal branch of NGC 6779 shows aclear gap at (B-V)o= 0.0. Finally, the revised value for themetallicity of NGC 6779 led to a revision of its age to 13 Gyr, usingthe age-index calibrations of Salaris & Weiss.

Abundance Trends of Alpha and Fe-Peak Elements in Globular Clusters
A fairly large fraction of Galactic globular clusters have beensubjected to some sort of high spectral resolution abundance analysis inthe past two decades. Several clusters have enjoyed the scrutiny oflarge numbers (>20) of their giant stars at very high resolution (R> 40,000) and signal-to-noise (>100), and such investigations haveeven begun to probe the fainter subgiant cluster members. Other clustershave seemed to be of lesser interest, having only studies of a few oftheir brighter members reported in the literature. This brief overviewwill consider the abundance trends of some key element groups, includingthe alpha, Fe-peak, neutron-capture, and proton-capture elements. Somecomparison with field stars will be attempted to illustrate wherestellar population differences between clusters and the field seem tooccur. Suggestions for renewed observational attention will be drawn tospecific clusters whose chemical origin appears to be substantiallydifferent than the general Galactic halo.

RR Lyrae variables in Galactic globular clusters. I. The observational scenario
In this paper we revisit observational data concerning RR Lyrae stars inGalactic globular clusters, presenting frequency histograms offundamentalized periods for the 32 clusters having more than 12pulsators with well recognized period and pulsation mode. One finds thatthe range of fundamentalized periods covered by the variables in a givencluster remains fairly constant in varying the cluster metallicity allover the metallicity range spanned by the cluster sample, with the onlytwo exceptions given by M 15 and NGC 6441. We conclude that the width intemperature of the RR Lyrae instability strip appears largelyindependent of the cluster metallicity. At the same time, it appearsthat the fundamentalized periods are not affected by the predictedvariation of pulsators luminosity with metal abundance, indicating theoccurrence of a correlated variation in the pulsator mass. We discussmean periods in a selected sample of statistically significant ``RRrich" clusters with no less than 10 RRab and 5 RRc variables. One findsa clear evidence for the well known Oosterhoff dichotomy in the meanperiod of ab-type variables, together with a similarlyclear evidence for a constancy of the mean fundamentalized period in passing from Oosterhoff type II to type I clusters. Onthis basis, the origin of the Oosterhoff dichotomy is discussed,presenting evidence against a strong dependence of the RR Lyraeluminosity on the metal content. On the contrary, i) the continuity ofthe mean fundamentalized period, ii) the period frequency histograms inthe two prototypes M 3 (type I) and M 15 (type II), iii) the relativeabundance of first overtone pulsators, and iv) the observed differencebetween mean fundamental and fundamentalized periods, all agree in suggesting the dominant occurrence of avariation in the pulsation mode in a middle region of the instabilitystrip (the ``OR" zone), where variables of Oosterhoff type I and type IIclusters are pulsating in the fundamental or first overtone mode,respectively.

The Red Giant Branch luminosity function bump
We present observational estimates of the magnitude difference betweenthe luminosity function red giant branch bump and the horizontal branch(Delta F555WbumpHB), and of star counts in thebump region (Rbump), for a sample of 54 Galactic globularclusters observed by the HST. The large sample of stars resolved in eachcluster, and the high photometric accuracy of the data allowed us todetect the bump also in a number of metal poor clusters. To reduce thephotometric uncertainties, empirical values are compared withtheoretical predictions obtained from a set of updated canonical stellarevolution models which have been transformed directly into the HSTflight system. We found an overall qualitative agreement between theoryand observations. Quantitative estimates of the confidence level arehampered by current uncertainties on the globular cluster metallicityscale, and by the strong dependence of DeltaF555WbumpHB on the cluster metallicity. In case ofthe Rbump parameter, which is only weakly affected by themetallicity, we find a very good quantitative agreement betweentheoretical canonical models and observations. For our full clustersample the average difference between predicted and observedRbump values is practically negligible, and ranges from-0.002 to -0.028, depending on the employed metallicity scale. Theobserved dispersion around these values is entirely consistent with theobservational errors on Rbump. As a comparison, the value ofRbump predicted by theory in case of spurious bump detectionsdue to Poisson noise in the stellar counts would be ~ 0.10 smaller thanthe observed ones. We have also tested the influence on the predictedDelta F555WbumpHB and Rbump values ofan He-enriched component in the cluster stellar population, as recentlysuggested by D'Antona et al. (\cite{d02}). We find that, underreasonable assumptions concerning the size of this He-enrichedpopulation and the degree of enrichment, the predicted DeltaF555WbumpHB and Rbump values are onlymarginally affected.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by AURA,Inc., under NASA contract NAS5-26555, and on observations retrieved withthe ESO ST-ECF Archive.

Why hot horizontal branch stars can appear redder than red giants
In this paper we report on a curious feature in the V, (U-B)color-magnitude diagrams of globular clusters. In our database, we findthat a considerable fraction of blue horizontal branch stars, hotterthan the instability strip and cooler than the Grundahl et al. (1999)jump (i.e., 6000 <~ Teff(K)<~ 10 000), have (U-B)colors redder than their red giant progenitors. This red incursion isnot expected on theoretical grounds, as horizontal branch stars (whoseconvective regions are less extended than in red giant structures)should not ``appear'' cooler than a red giant. Analyzing data fromdifferent telescopes we show that: 1) the horizontal branch redincursion is strongly dependent on the shape of the adopted U filter andto a lesser extent, on the B filter; 2) the photometry done with Ufilters that do not encompass the Balmer jump shows the blue horizontalbranch red incursion; 3) the occurrence of this feature is also due tothe peculiar dependence of the U and B magnitudes on star effectivetemperature, gravity, and metallicity; 4) theoretical tracks canreproduce the observed horizontal branch morphology, provided that theappropriate (i.e. exactly responding to the filters effectively used inthe observations) transmission curve efficiencies are used for derivingcolor-Teff transformations; 5) the red incursion extentdepends on metallicity.Based on observations with the ESO/MPI 2.2 m telescope, located at LaSilla Observatory (Chile) and on observations with the NASA/ESA HubbleSpace Telescope.

Globular Clusters as Candidates for Gravitational Lenses to Explain Quasar-Galaxy Associations
We argue that globular clusters (GCs) are good candidates forgravitational lenses in explaining quasar-galaxy associations. Thecatalog of associations (Bukhmastova 2001) compiled from the LEDAcatalog of galaxies (Paturel 1997) and from the catalog of quasars(Veron-Cetty and Veron 1998) is used. Based on the new catalog, we showthat one might expect an increased number of GCs around irregulargalaxies of types 9 and 10 from the hypothesis that distant compactsources are gravitationally lensed by GCs in the halos of foregroundgalaxies. The King model is used to determine the central surfacedensities of 135 GCs in the Milky Way. The distribution of GCs incentral surface density was found to be lognormal.

A Globular Cluster Metallicity Scale Based on the Abundance of Fe II
Assuming that in the atmospheres of low-mass, metal-poor red giantstars, one-dimensional models based on local thermodynamic equilibriumaccurately predict the abundance of iron from Fe II, we derive aglobular cluster metallicity scale based on the equivalent widths of FeII lines measured from high-resolution spectra of giants in 16 keyclusters lying in the abundance range-2.4<[Fe/H]II<-0.7. We base the scale largely on theanalysis of spectra of 149 giant stars in 11 clusters by the Lick-Texasgroup supplemented by high-resolution studies of giants in five otherclusters. We also derive ab initio the true distance moduli for certainkey clusters (M5, M3, M13, M92, and M15) as a means of setting stellarsurface gravities. Allowances are made for changes in the abundancescale if one employs (1) Kurucz models with and without convectiveovershooting to represent giant star atmospheres in place of MARCSmodels and (2) the Houdashelt et al. color-temperature scale in place ofthe Alonso et al. scale.We find that [Fe/H]II is correlated linearly withW', the reduced strength of the near-infrared Ca II tripletdefined by Rutledge et al., although the actual correlation coefficientsdepend on the atmospheric model employed. The correlations, limited tothe range -2.4<[Fe/H]II<-0.7, are as follows:1.[Fe/H]II=0.531W'-3.279(MARCS),2.[Fe/H]II=0.537W'-3.225 (Kurucz withconvective overshooting),3.[Fe/H]II=0.562W'-3.329 (Kurucz withoutconvective overshooting).We also discuss how to estimate [X/Fe] ratios. We suggest that C, N, andO, as well as elements appearing in the spectrum in the singly ionizedstate, e.g., Ti, Sc, Ba, La, and Eu, should be normalized to theabundance of Fe II. Other elements, which appear mostly in the neutralstate, but for which the dominant species is nevertheless the ionizedstate, are probably best normalized to Fe I, but uncertainties remain.

Does the mixing length parameter depend on metallicity?. Further tests of evolutionary sequences using homogeneous databases
This paper is a further step in the investigation of the morphology ofthe color-magnitude diagram of Galactic globular clusters, and thefine-tuning of theoretical models, made possible by the recentobservational efforts to build homogeneous photometric databases. Inparticular, we examine here the calibration of the morphologicalparameter WHB vs. metallicity, originally proposed by Brocatoet al. (\cite{brocatoEtal98}; B98), which essentially measures the colorposition of the red-giant branch. We show that the parameter can be usedto have a first-order estimate of the cluster metallicity, since thedispersion around the mean trend with [Fe/H] is compatible with themeasurement errors. The tight WHB-[Fe/H] relation is thenused to show that variations in helium content or age do not affect theparameter, whereas it is strongly influenced by the mixing-lengthparameter alpha (as expected). This fact allows us, for the first time,to state that there is no trend of alpha with the metal content of acluster. A thorough examination of the interrelated questions of thealpha -elements enhancement and the color-Tefftransformations, highlights that there is an urgent need for anindependent assessment of which of the two presently acceptedmetallicity scales is the true indicator of a cluster's iron content.Whatever scenario is adopted, it also appears that a deep revision ofthe V-I-temperature relations is needed.

HST color-magnitude diagrams of 74 galactic globular clusters in the HST F439W and F555W bands
We present the complete photometric database and the color-magnitudediagrams for 74 Galactic globular clusters observed with the HST/WFPC2camera in the F439W and F555W bands. A detailed discussion of thevarious reduction steps is also presented, and of the procedures totransform instrumental magnitudes into both the HST F439W and F555Wflight system and the standard Johnson ( B ) and ( V ) systems. We alsodescribe the artificial star experiments which have been performed toderive the star count completeness in all the relevant branches of thecolor magnitude diagram. The entire photometric database and thecompleteness function will be made available on the Web immediatelyafter the publication of the present paper. Based on observations withthe NASA/ESA Hubble Space Telescope, obtained at the Space TelescopeScience Institute, which is operated by AURA, Inc., under NASA contractNAS5-26555, and on observations retrieved from the ESO ST-ECF Archive.

Global metallicity of globular cluster stars from colour-magnitude diagrams
We have developed an homogeneous evolutionary scenario for H- andHe-burning low-mass stars by computing updated stellar models for a widemetallicity and age range [0.0002<=Z<=0.004 and9<=t(Gyr)<=15, respectively] suitable to study globular clusters.This theoretical scenario allows us to provide self-consistentpredictions about the dependence of selected observational features ofthe colour-magnitude diagram, such as the brightness of the turn-off(TO), the zero-age horizontal branch (ZAHB) and the red giant branchbump (BUMP), on the cluster metallicity and age. Taking into accountthese predictions, we introduce a new observable based on the visualmagnitude difference between the TO and the ZAHB[ΔMV(TO-ZAHB)], and the TO and the BUMP[ΔMV(TO-BUMP)], given byA=ΔMV(TO-BUMP)-0.566ΔMV(TO-ZAHB). Weshow that the parameter A does not depend at all on the cluster age, butthat it does strongly depend on the cluster global metallicity. Thecalibration of the parameter A as a function of Z is then provided, asbased on our evolutionary models. We tested the reliability of thisresult by also considering stellar models computed by other authors,employing different input physics. Eventually, we present clear evidencethat the variation of ΔMV(TO-BUMP) withΔMV(TO-ZAHB) does supply a powerful probe of the globalmetal abundance, at least when homogeneous theoretical frameworks areadopted. Specifically, we show that the extensive set of models byVanden Berg et al. suggests a slightly different calibration of A versusZ calibration, which however provides global metallicities higher byonly 0.08+/-0.06dex with respect to the results from our computations.We provide an estimate of the global metallicity of 36 globular clustersin the Milky Way, based on our A-Z calibration, and a largeobservational data base of Galactic globular clusters. By consideringthe empirical [Fe/H] scales by both Zinn & West and Carretta &Gratton, we are able to provide an estimate of the α-elementenhancement for all clusters in our sample. We show that the trend of[α/Fe] with respect to the iron content significantly depends onthe adopted empirical [Fe/H] scale, with the Zinn & West onesuggesting α-element enhancements in fine agreement with currentspectroscopic measurements.

새 글 등록


관련 링크

  • - 링크가 없습니다. -
새 링크 등록


다음 그룹에 속해있음:


관측 및 측정 데이터

별자리:파리자리
적경:12h59m34.98s
적위:-70°52'28.6"
가시등급:7.4

천체목록:
일반명   (Edit)
NGC 2000.0NGC 4833

→ VizieR에서 더 많은 목록을 가져옵니다.